IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v13y2025i15p2387-d1709672.html
   My bibliography  Save this article

Zero Knowledge Proof Solutions to Linkability Problems in Blockchain-Based Collaboration Systems

Author

Listed:
  • Chibuzor Udokwu

    (Austrian Blockchain Center, 4 Perspektivstrasse, 1020 Vienna, Austria)

Abstract

Blockchain provides the opportunity for organizations to execute trustable collaborations through smart contract automations. However, linkability problems exist in blockchain-based collaboration platforms due to privacy leakages, which, when exploited, will result in tracing transaction patterns to users and exposing collaborating organizations and parties. Some privacy-preserving mechanisms have been adopted to reduce linkability problems through the integration of access control systems to smart contracts, off-chain data storage, usage of permissioned blockchain, etc. Still, linkability problems persist in applications deployed in both private and public blockchain networks. Zero-knowledge proof (ZKP) systems provide mechanisms for verifying the correctness of transactions and actions executed on the blockchain without revealing complete information about the transaction. Hence, ZKP systems provide a potential solution to eliminating linkability problems in blockchain-based collaboration systems. The objective of this paper is to identify various linkability problems that exist in blockchain-enabled collaboration systems and understand how ZKP algorithms and smart contract frameworks can be used in addressing the linkability problems. Furthermore, a proof of concept (PoC) is implemented and simulated to demonstrate a ZKP system for a privacy-preserving feedback mechanism that mitigates linkability problems in collaboration systems. The scenario-based results from the PoC evaluation show that a feedback system that includes project participants’ verification through membership proofs, verification of on-time submission of feedback through range proofs, and encrypted calculation of feedback scores through homomorphic arithmetic provides a privacy-aware system for executing collaborations on the blockchain without linking project participants.

Suggested Citation

  • Chibuzor Udokwu, 2025. "Zero Knowledge Proof Solutions to Linkability Problems in Blockchain-Based Collaboration Systems," Mathematics, MDPI, vol. 13(15), pages 1-29, July.
  • Handle: RePEc:gam:jmathe:v:13:y:2025:i:15:p:2387-:d:1709672
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/13/15/2387/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/13/15/2387/
    Download Restriction: no
    ---><---

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:15:p:2387-:d:1709672. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.