IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v13y2025i14p2324-d1706702.html
   My bibliography  Save this article

An Exponentially Delayed Feedback Chaotic Model Resistant to Dynamic Degradation and Its Application

Author

Listed:
  • Bocheng Liu

    (School of Information Engineering, Gandong University, Fuzhou 344000, China
    Jiangxi Institute of Industrial Technology for Internet of Things, Yingtan 335000, China)

  • Jian Song

    (School of Information Engineering, Gandong University, Fuzhou 344000, China)

  • Niande Jiang

    (School of Information Engineering, Gandong University, Fuzhou 344000, China)

  • Zhuo Wang

    (School of Computing Sciences, College of Computing-Informatics and Mathematics, Universiti Teknologi MARA, Shah Alam 40450, Malaysia
    School of Software, Nanchang University, Nanchang 330047, China)

Abstract

In this paper, an exponential delay feedback method is proposed to improve the performance of the digital chaotic maps against their dynamical degradation. In this paper, the performance of the scheme is verified using one-dimensional linear, exponential, and nonlinear exponential, Logistic, and Chebyshev maps, and numerical analyses show that the period during which the chaotic sequence enters the cycle is considerably prolonged, and the correlation performance is improved. At the same time, in order to verify the practicality of the method, an image encryption algorithm is designed, and its security analysis results show that the algorithm has a high level of security and can compete with other encryption schemes. Therefore, the exponential delay feedback method can effectively improve the dynamics degradation of a digital chaotic map.

Suggested Citation

  • Bocheng Liu & Jian Song & Niande Jiang & Zhuo Wang, 2025. "An Exponentially Delayed Feedback Chaotic Model Resistant to Dynamic Degradation and Its Application," Mathematics, MDPI, vol. 13(14), pages 1-24, July.
  • Handle: RePEc:gam:jmathe:v:13:y:2025:i:14:p:2324-:d:1706702
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/13/14/2324/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/13/14/2324/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhu, Hegui & Dai, Lewen & Liu, Yating & Wu, Lijun, 2021. "A three-dimensional bit-level image encryption algorithm with Rubik’s cube method," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 185(C), pages 754-770.
    2. Yao Wu & Lingfeng Liu, 2020. "An Iteration-Time Combination Method to Reduce the Dynamic Degradation of Digital Chaotic Maps," Complexity, Hindawi, vol. 2020, pages 1-11, October.
    3. Shenli Zhu & Xiaoheng Deng & Wendong Zhang & Congxu Zhu, 2023. "Image Encryption Scheme Based on Newly Designed Chaotic Map and Parallel DNA Coding," Mathematics, MDPI, vol. 11(1), pages 1-22, January.
    4. Yue Zhu & Chunhua Wang & Jingru Sun & Fei Yu, 2023. "A Chaotic Image Encryption Method Based on the Artificial Fish Swarms Algorithm and the DNA Coding," Mathematics, MDPI, vol. 11(3), pages 1-18, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Lingfeng & Wang, Jie, 2023. "A cluster of 1D quadratic chaotic map and its applications in image encryption," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 204(C), pages 89-114.
    2. Xiaoqiang Zhang & Mi Liu & Xiaochang Yang, 2023. "Color Image Encryption Algorithm Based on Cross-Spiral Transformation and Zone Diffusion," Mathematics, MDPI, vol. 11(14), pages 1-28, July.
    3. Ziqi Zhou & Xuemei Xu & Zhaohui Jiang & Kehui Sun, 2023. "Multiple-Image Encryption Scheme Based on an N-Dimensional Chaotic Modular Model and Overlapping Block Permutation–Diffusion Using Newly Defined Operation," Mathematics, MDPI, vol. 11(15), pages 1-27, August.
    4. Hairong Lin & Chunhua Wang & Fei Yu & Jingru Sun & Sichun Du & Zekun Deng & Quanli Deng, 2023. "A Review of Chaotic Systems Based on Memristive Hopfield Neural Networks," Mathematics, MDPI, vol. 11(6), pages 1-18, March.
    5. Mengyao Li & Xianwen Fang & Asimeng Ernest, 2023. "A Color Image Encryption Method Based on Dynamic Selection Chaotic System and Singular Value Decomposition," Mathematics, MDPI, vol. 11(15), pages 1-27, July.
    6. Wu, Xin & Shi, Hang & Ji’e, Musha & Duan, Shukai & Wang, Lidan, 2023. "A novel image compression and encryption scheme based on conservative chaotic system and DNA method," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    7. Jie Zhang & Enze Liu, 2024. "Circuit design and image encryption of CNN chaotic system based on memristor," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 97(7), pages 1-19, July.
    8. Zizhao Xie & Jingru Sun & Yiping Tang & Xin Tang & Oluyomi Simpson & Yichuang Sun, 2023. "A K-SVD Based Compressive Sensing Method for Visual Chaotic Image Encryption," Mathematics, MDPI, vol. 11(7), pages 1-20, March.
    9. Hemalatha Mahalingam & Padmapriya Velupillai Meikandan & Karuppuswamy Thenmozhi & Kawthar Mostafa Moria & Chandrasekaran Lakshmi & Nithya Chidambaram & Rengarajan Amirtharajan, 2023. "Neural Attractor-Based Adaptive Key Generator with DNA-Coded Security and Privacy Framework for Multimedia Data in Cloud Environments," Mathematics, MDPI, vol. 11(8), pages 1-23, April.
    10. Bayani, Atiyeh & Alexander, Prasina & Azarnoush, Hamed & Rajagopal, Karthikeyan & Jafari, Sajad & Nazarimehr, Fahimeh, 2023. "Designing networks with specific synchronization transitions independent of the system’s dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 632(P1).
    11. Yang, Zhen & Liu, Yinzhe & Wu, Yuqi & Qi, Yunliang & Ren, Fengyuan & Li, Shouliang, 2023. "A high speed pseudo-random bit generator driven by 2D-discrete hyperchaos," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    12. Zhu, Shenli & Deng, Xiaoheng & Zhang, Wendong & Zhu, Congxu, 2023. "Secure image encryption scheme based on a new robust chaotic map and strong S-box," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 207(C), pages 322-346.
    13. Ye, Guodong & Wu, Huishan & Liu, Min & Huang, Xiaoling, 2023. "Reversible image-hiding algorithm based on singular value sampling and compressive sensing," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
    14. Lin, Hairong & Wang, Chunhua & Du, Sichun & Yao, Wei & Sun, Yichuang, 2023. "A family of memristive multibutterfly chaotic systems with multidirectional initial-based offset boosting," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    15. Li Shi & Xiangjun Li & Bingxue Jin & Yingjie Li, 2024. "A Chaos-Based Encryption Algorithm to Protect the Security of Digital Artwork Images," Mathematics, MDPI, vol. 12(20), pages 1-17, October.
    16. Ernesto Moya-Albor & Andrés Romero-Arellano & Jorge Brieva & Sandra L. Gomez-Coronel, 2023. "Color Image Encryption Algorithm Based on a Chaotic Model Using the Modular Discrete Derivative and Langton’s Ant," Mathematics, MDPI, vol. 11(10), pages 1-35, May.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:14:p:2324-:d:1706702. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.