IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v172y2023ics0960077923003934.html
   My bibliography  Save this article

A novel image compression and encryption scheme based on conservative chaotic system and DNA method

Author

Listed:
  • Wu, Xin
  • Shi, Hang
  • Ji’e, Musha
  • Duan, Shukai
  • Wang, Lidan

Abstract

An image compression encryption scheme on the strength of a conservative chaotic map, compressed sensing (CS) and DNA method is proposed. Built on the hash algorithm, a novel algorithm for generating the initial state of the chaotic map is designed, which makes the algorithm resistant to chosen-plaintext and known-plaintext attacks. The pseudo-random sequences which are produced by the conservative chaotic map are devoted to constructing the measurement matrix of CS and control the encoding and operation mode of DNA, which improves the complexity of the cryptosystem. In addition, a novel Integrated Cyclic Crossover and Mutation algorithm (ICCM) based on DNA method is proposed. ICCM simultaneously completes the scrambling and diffusion of images based on the loop structure, which greatly enhances the security of the algorithm. Experimental results and a number of security analyses demonstrate that the scheme has excellent performance and robustness, and has good resistance to various attacks.

Suggested Citation

  • Wu, Xin & Shi, Hang & Ji’e, Musha & Duan, Shukai & Wang, Lidan, 2023. "A novel image compression and encryption scheme based on conservative chaotic system and DNA method," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
  • Handle: RePEc:eee:chsofr:v:172:y:2023:i:c:s0960077923003934
    DOI: 10.1016/j.chaos.2023.113492
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077923003934
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2023.113492?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cang, Shijian & Wu, Aiguo & Wang, Zenghui & Chen, Zengqiang, 2017. "On a 3-D generalized Hamiltonian model with conservative and dissipative chaotic flows," Chaos, Solitons & Fractals, Elsevier, vol. 99(C), pages 45-51.
    2. Tarnopolski, Mariusz, 2018. "Correlation between the Hurst exponent and the maximal Lyapunov exponent: Examining some low-dimensional conservative maps," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 834-844.
    3. Xiao, Di & Liao, Xiaofeng & Wong, K.W., 2005. "An efficient entire chaos-based scheme for deniable authentication," Chaos, Solitons & Fractals, Elsevier, vol. 23(4), pages 1327-1331.
    4. Zou, Chengye & Wang, Xingyuan & Zhou, Changjun & Xu, Shujuan & Huang, Chun, 2022. "A novel image encryption algorithm based on DNA strand exchange and diffusion," Applied Mathematics and Computation, Elsevier, vol. 430(C).
    5. Zhu, Shenli & Deng, Xiaoheng & Zhang, Wendong & Zhu, Congxu, 2023. "Secure image encryption scheme based on a new robust chaotic map and strong S-box," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 207(C), pages 322-346.
    6. Shenli Zhu & Xiaoheng Deng & Wendong Zhang & Congxu Zhu, 2023. "Image Encryption Scheme Based on Newly Designed Chaotic Map and Parallel DNA Coding," Mathematics, MDPI, vol. 11(1), pages 1-22, January.
    7. Silva-García, V.M. & Flores-Carapia, R. & Rentería-Márquez, C. & Luna-Benoso, B. & Aldape-Pérez, M., 2018. "Substitution box generation using Chaos: An image encryption application," Applied Mathematics and Computation, Elsevier, vol. 332(C), pages 123-135.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Xilin & Tong, Xiaojun & Wang, Zhu & Zhang, Miao, 2022. "A new n-dimensional conservative chaos based on Generalized Hamiltonian System and its’ applications in image encryption," Chaos, Solitons & Fractals, Elsevier, vol. 154(C).
    2. Xiaoqiang Zhang & Mi Liu & Xiaochang Yang, 2023. "Color Image Encryption Algorithm Based on Cross-Spiral Transformation and Zone Diffusion," Mathematics, MDPI, vol. 11(14), pages 1-28, July.
    3. Ye, Guodong & Wu, Huishan & Liu, Min & Huang, Xiaoling, 2023. "Reversible image-hiding algorithm based on singular value sampling and compressive sensing," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
    4. Ernesto Moya-Albor & Andrés Romero-Arellano & Jorge Brieva & Sandra L. Gomez-Coronel, 2023. "Color Image Encryption Algorithm Based on a Chaotic Model Using the Modular Discrete Derivative and Langton’s Ant," Mathematics, MDPI, vol. 11(10), pages 1-35, May.
    5. Ziqi Zhou & Xuemei Xu & Zhaohui Jiang & Kehui Sun, 2023. "Multiple-Image Encryption Scheme Based on an N-Dimensional Chaotic Modular Model and Overlapping Block Permutation–Diffusion Using Newly Defined Operation," Mathematics, MDPI, vol. 11(15), pages 1-27, August.
    6. Mihailović, Dragutin T. & Nikolić-Đorić, Emilija & Arsenić, Ilija & Malinović-Milićević, Slavica & Singh, Vijay P. & Stošić, Tatijana & Stošić, Borko, 2019. "Analysis of daily streamflow complexity by Kolmogorov measures and Lyapunov exponent," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 290-303.
    7. Lei, Min & Meng, Guang & Feng, Zhengjin, 2006. "Security analysis of chaotic communication systems based on Volterra–Wiener–Korenberg model," Chaos, Solitons & Fractals, Elsevier, vol. 28(1), pages 264-270.
    8. Kanso, Ali & Smaoui, Nejib, 2009. "Logistic chaotic maps for binary numbers generations," Chaos, Solitons & Fractals, Elsevier, vol. 40(5), pages 2557-2568.
    9. Han, Song, 2008. "Security of a key agreement protocol based on chaotic maps," Chaos, Solitons & Fractals, Elsevier, vol. 38(3), pages 764-768.
    10. Bowen Zhang & Lingfeng Liu, 2023. "Chaos-Based Image Encryption: Review, Application, and Challenges," Mathematics, MDPI, vol. 11(11), pages 1-39, June.
    11. Gao, Tiegang & Gu, Qiaolun & Emmanuel, Sabu, 2009. "A novel image authentication scheme based on hyper-chaotic cell neural network," Chaos, Solitons & Fractals, Elsevier, vol. 42(1), pages 548-553.
    12. Mengyao Li & Xianwen Fang & Asimeng Ernest, 2023. "A Color Image Encryption Method Based on Dynamic Selection Chaotic System and Singular Value Decomposition," Mathematics, MDPI, vol. 11(15), pages 1-27, July.
    13. Zou, Chengye & Wang, Lin, 2023. "A visual DNA compilation of Rössler system and its application in color image encryption," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    14. Behnia, S. & Akhshani, A. & Mahmodi, H. & Akhavan, A., 2008. "A novel algorithm for image encryption based on mixture of chaotic maps," Chaos, Solitons & Fractals, Elsevier, vol. 35(2), pages 408-419.
    15. McAllister, A. & McCartney, M. & Glass, D.H., 2023. "Stability, collapse and hyperchaos in a class of tri-trophic predator–prey models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 628(C).
    16. Shahna, K.U., 2023. "Novel chaos based cryptosystem using four-dimensional hyper chaotic map with efficient permutation and substitution techniques," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    17. Hemalatha Mahalingam & Padmapriya Velupillai Meikandan & Karuppuswamy Thenmozhi & Kawthar Mostafa Moria & Chandrasekaran Lakshmi & Nithya Chidambaram & Rengarajan Amirtharajan, 2023. "Neural Attractor-Based Adaptive Key Generator with DNA-Coded Security and Privacy Framework for Multimedia Data in Cloud Environments," Mathematics, MDPI, vol. 11(8), pages 1-23, April.
    18. Xu, Beibei & Zhang, Jingjing & Egusquiza, Mònica & Chen, Diyi & Li, Feng & Behrens, Paul & Egusquiza, Eduard, 2021. "A review of dynamic models and stability analysis for a hydro-turbine governing system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    19. Zhang, Mengjiao & Zang, Hongyan & Bai, Luyuan, 2022. "A new predefined-time sliding mode control scheme for synchronizing chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    20. Akhshani, A. & Behnia, S. & Akhavan, A. & Jafarizadeh, M.A. & Abu Hassan, H. & Hassan, Z., 2009. "Hash function based on hierarchy of 2D piecewise nonlinear chaotic maps," Chaos, Solitons & Fractals, Elsevier, vol. 42(4), pages 2405-2412.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:172:y:2023:i:c:s0960077923003934. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.