Author
Listed:
- László Márkus
(Department of Probability Theory and Statistics, Eötvös Loránd University, 1117 Budapest, Hungary)
- Ashish Kumar
(Department of Probability Theory and Statistics, Eötvös Loránd University, 1117 Budapest, Hungary)
- Amina Darougi
(Doctoral School of Mathematics, Eötvös Loránd University, 1117 Budapest, Hungary)
Abstract
The stochastic correlation for Brownian motions is the integrand in the formula of their quadratic covariation. The estimation of this stochastic process becomes available from the temporally localized correlation of latent price driving Brownian motions in stochastic volatility models for asset prices. By analyzing this process for Apple and Microsoft stock prices traded minute-wise, we give statistical evidence for the roughness of its paths. Moment scaling indicates fractal behavior, and both fractal dimensions (approx. 1.95) and Hurst exponent estimates (around 0.05) point to rough paths. We model this rough stochastic correlation by a suitably transformed fractional Ornstein–Uhlenbeck process and simulate artificial stock prices, which allows computing tail dependence and the Herding Behavior Index (HIX) as functions in time. The computed HIX is hardly variable in time (e.g., standard deviation of 0.003–0.006); on the contrary, tail dependence fluctuates more heavily (e.g., standard deviation approx. 0.04). This results in a higher correlation risk, i.e., more frequent sudden coincident appearance of extreme prices than a steady HIX value indicates.
Suggested Citation
László Márkus & Ashish Kumar & Amina Darougi, 2025.
"Creating Tail Dependence by Rough Stochastic Correlation Satisfying a Fractional SDE; An Application in Finance,"
Mathematics, MDPI, vol. 13(13), pages 1-20, June.
Handle:
RePEc:gam:jmathe:v:13:y:2025:i:13:p:2072-:d:1685378
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:13:p:2072-:d:1685378. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.