IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v13y2025i10p1638-d1657768.html
   My bibliography  Save this article

A Construction Method for a Coal Mining Equipment Maintenance Large Language Model Based on Multi-Dimensional Prompt Learning and Improved LoRA

Author

Listed:
  • Xiangang Cao

    (School of Mechanical Engineering, Xi’an University of Science and Technology, Xi’an 710054, China
    Shaanxi Key Laboratory of Mine Electromechanical Equipment Intelligent Monitoring, Xi’an 710054, China)

  • Xulong Wang

    (School of Mechanical Engineering, Xi’an University of Science and Technology, Xi’an 710054, China
    Shaanxi Key Laboratory of Mine Electromechanical Equipment Intelligent Monitoring, Xi’an 710054, China)

  • Luyang Shi

    (School of Mechanical Engineering, Xi’an University of Science and Technology, Xi’an 710054, China
    Shaanxi Key Laboratory of Mine Electromechanical Equipment Intelligent Monitoring, Xi’an 710054, China)

  • Xin Yang

    (School of Mechanical Engineering, Xi’an University of Science and Technology, Xi’an 710054, China
    Shaanxi Key Laboratory of Mine Electromechanical Equipment Intelligent Monitoring, Xi’an 710054, China)

  • Xinyuan Zhang

    (School of Mechanical Engineering, Xi’an University of Science and Technology, Xi’an 710054, China
    Shaanxi Key Laboratory of Mine Electromechanical Equipment Intelligent Monitoring, Xi’an 710054, China)

  • Yong Duan

    (School of Mechanical Engineering, Xi’an University of Science and Technology, Xi’an 710054, China
    Shaanxi Key Laboratory of Mine Electromechanical Equipment Intelligent Monitoring, Xi’an 710054, China)

Abstract

The intelligent maintenance of coal mining equipment is crucial for ensuring safe production in coal mines. Despite the rapid development of large language models (LLMs) injecting new momentum into the intelligent transformation and upgrading of coal mining, their application in coal mining equipment maintenance still faces challenges due to the diversity and technical complexity of the equipment. To address the scarcity of domain knowledge and poor model adaptability in multi-task scenarios within the coal mining equipment maintenance field, a method for constructing a large language model based on multi-dimensional prompt learning and improved LoRA (MPL-LoRA) is proposed. This method leverages multi-dimensional prompt learning to guide LLMs in generating high-quality multi-task datasets for coal mining equipment maintenance, ensuring dataset quality while improving construction efficiency. Additionally, a fine-tuning approach based on the joint optimization of a mixture of experts (MoE) and low-rank adaptation (LoRA) is introduced, which employs multiple expert networks and task-driven gating functions to achieve the precise modeling of different maintenance tasks. Experimental results demonstrate that the self-constructed dataset achieves fluency and professionalism comparable to manually annotated data. Compared to the base LLM, the proposed method shows significant performance improvements across all maintenance tasks, offering a novel solution for intelligent coal mining maintenance.

Suggested Citation

  • Xiangang Cao & Xulong Wang & Luyang Shi & Xin Yang & Xinyuan Zhang & Yong Duan, 2025. "A Construction Method for a Coal Mining Equipment Maintenance Large Language Model Based on Multi-Dimensional Prompt Learning and Improved LoRA," Mathematics, MDPI, vol. 13(10), pages 1-21, May.
  • Handle: RePEc:gam:jmathe:v:13:y:2025:i:10:p:1638-:d:1657768
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/13/10/1638/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/13/10/1638/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shijie Wu & Ozan Irsoy & Steven Lu & Vadim Dabravolski & Mark Dredze & Sebastian Gehrmann & Prabhanjan Kambadur & David Rosenberg & Gideon Mann, 2023. "BloombergGPT: A Large Language Model for Finance," Papers 2303.17564, arXiv.org, revised Dec 2023.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lezhi Li & Ting-Yu Chang & Hai Wang, 2023. "Multimodal Gen-AI for Fundamental Investment Research," Papers 2401.06164, arXiv.org.
    2. Ankur Sinha & Chaitanya Agarwal & Pekka Malo, 2025. "FinBloom: Knowledge Grounding Large Language Model with Real-time Financial Data," Papers 2502.18471, arXiv.org.
    3. Hoyoung Lee & Youngsoo Choi & Yuhee Kwon, 2024. "Quantifying Qualitative Insights: Leveraging LLMs to Market Predict," Papers 2411.08404, arXiv.org.
    4. Zhaofeng Zhang & Banghao Chen & Shengxin Zhu & Nicolas Langren'e, 2024. "Quantformer: from attention to profit with a quantitative transformer trading strategy," Papers 2404.00424, arXiv.org, revised Oct 2024.
    5. Wentao Zhang & Lingxuan Zhao & Haochong Xia & Shuo Sun & Jiaze Sun & Molei Qin & Xinyi Li & Yuqing Zhao & Yilei Zhao & Xinyu Cai & Longtao Zheng & Xinrun Wang & Bo An, 2024. "A Multimodal Foundation Agent for Financial Trading: Tool-Augmented, Diversified, and Generalist," Papers 2402.18485, arXiv.org, revised Jun 2024.
    6. Yinheng Li & Shaofei Wang & Han Ding & Hang Chen, 2023. "Large Language Models in Finance: A Survey," Papers 2311.10723, arXiv.org, revised Jul 2024.
    7. Lars Hornuf & David J. Streich & Niklas Töllich, 2025. "Making GenAI Smarter: Evidence from a Portfolio Allocation Experiment," CESifo Working Paper Series 11862, CESifo.
    8. Gupta, Abhijit, 2025. "Decoding Futures Price Dynamics: A Regularized Sparse Autoencoder for Interpretable Multi-Horizon Forecasting and Factor Discovery," OSF Preprints 4rzky_v1, Center for Open Science.
    9. Dong, Mengming Michael & Stratopoulos, Theophanis C. & Wang, Victor Xiaoqi, 2024. "A scoping review of ChatGPT research in accounting and finance," International Journal of Accounting Information Systems, Elsevier, vol. 55(C).
    10. Vasant Dhar & Jo~ao Sedoc, 2025. "DBOT: Artificial Intelligence for Systematic Long-Term Investing," Papers 2504.05639, arXiv.org.
    11. Adria Pop & Jan Sporer, 2024. "The Structure of Financial Equity Research Reports -- Identification of the Most Frequently Asked Questions in Financial Analyst Reports to Automate Equity Research Using Llama 3 and GPT-4," Papers 2407.18327, arXiv.org, revised Jun 2025.
    12. Yuqi Nie & Yaxuan Kong & Xiaowen Dong & John M. Mulvey & H. Vincent Poor & Qingsong Wen & Stefan Zohren, 2024. "A Survey of Large Language Models for Financial Applications: Progress, Prospects and Challenges," Papers 2406.11903, arXiv.org.
    13. Masanori Hirano & Kentaro Imajo, 2024. "Construction of Domain-specified Japanese Large Language Model for Finance through Continual Pre-training," Papers 2404.10555, arXiv.org.
    14. Van-Duc Le, 2024. "Auto-Generating Earnings Report Analysis via a Financial-Augmented LLM," Papers 2412.08179, arXiv.org.
    15. Baptiste Lefort & Eric Benhamou & Jean-Jacques Ohana & David Saltiel & Beatrice Guez, 2024. "Optimizing Performance: How Compact Models Match or Exceed GPT's Classification Capabilities through Fine-Tuning," Papers 2409.11408, arXiv.org.
    16. Hongyang Yang & Likun Lin & Yang She & Xinyu Liao & Jiaoyang Wang & Runjia Zhang & Yuquan Mo & Christina Dan Wang, 2025. "FinRobot: Generative Business Process AI Agents for Enterprise Resource Planning in Finance," Papers 2506.01423, arXiv.org.
    17. Zhiyu Cao & Zachary Feinstein, 2024. "Large Language Model in Financial Regulatory Interpretation," Papers 2405.06808, arXiv.org, revised Jul 2024.
    18. Alejandro Lopez-Lira & Yuehua Tang, 2023. "Can ChatGPT Forecast Stock Price Movements? Return Predictability and Large Language Models," Papers 2304.07619, arXiv.org, revised Sep 2024.
    19. Gu, Hanchi & Schreyer, Marco & Moffitt, Kevin & Vasarhelyi, Miklos, 2024. "Artificial intelligence co-piloted auditing," International Journal of Accounting Information Systems, Elsevier, vol. 54(C).
    20. Hongyang Yang & Xiao-Yang Liu & Christina Dan Wang, 2023. "FinGPT: Open-Source Financial Large Language Models," Papers 2306.06031, arXiv.org.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:10:p:1638-:d:1657768. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.