IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i8p1133-d1372842.html
   My bibliography  Save this article

Application of Graph Theory for Blockchain Technologies

Author

Listed:
  • Guruprakash Jayabalasamy

    (Department of Computer Science and Engineering, Amrita School of Computing, Amrita Vishwa Vidyapeetham, Coimbatore 641112, India)

  • Cyril Pujol

    (École Normale Supérieure Paris-Saclay, 91190 Gif-sur-Yvette, France)

  • Krithika Latha Bhaskaran

    (School of Computer Science Engineering and Information Systems, Vellore Institute of Technology, Vellore 632014, India)

Abstract

Blockchain technology, serving as the backbone for decentralized systems, facilitates secure and transparent transactional data storage across a distributed network of nodes. Blockchain platforms rely on distributed ledgers to enable secure peer-to-peer transactions without central oversight. As these systems grow in complexity, analyzing their topological structure and vulnerabilities requires robust mathematical frameworks. This paper explores applications of graph theory for modeling blockchain networks to evaluate decentralization, security, privacy, scalability and NFT Mapping. We use graph metrics like degree distribution and betweenness centrality to quantify node connectivity, identify network bottlenecks, trace asset flows and detect communities. Attack vectors are assessed by simulating adversarial scenarios within graph models of blockchain systems. Overall, translating blockchain ecosystems into graph representations allows comprehensive analytical insights to guide the development of efficient, resilient decentralized infrastructures.

Suggested Citation

  • Guruprakash Jayabalasamy & Cyril Pujol & Krithika Latha Bhaskaran, 2024. "Application of Graph Theory for Blockchain Technologies," Mathematics, MDPI, vol. 12(8), pages 1-45, April.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:8:p:1133-:d:1372842
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/8/1133/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/8/1133/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Derek Liu & Francesco Piccoli & Katie Chen & Adrina Tang & Victor Fang, 2023. "NFT Wash Trading Detection," Papers 2305.01543, arXiv.org.
    2. Tetsuya Takaishi, 2017. "Statistical properties and multifractality of Bitcoin," Papers 1707.07618, arXiv.org, revised May 2018.
    3. Takaishi, Tetsuya, 2018. "Statistical properties and multifractality of Bitcoin," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 507-519.
    4. Jesse Yli-Huumo & Deokyoon Ko & Sujin Choi & Sooyong Park & Kari Smolander, 2016. "Where Is Current Research on Blockchain Technology?—A Systematic Review," PLOS ONE, Public Library of Science, vol. 11(10), pages 1-27, October.
    5. Soohoon Maeng & Meryam Essaid & Changhyun Lee & Sejin Park & Hongteak Ju, 2021. "Visualization of Ethereum P2P network topology and peer properties," International Journal of Network Management, John Wiley & Sons, vol. 31(6), November.
    6. Hassan Raza & Sunny Kumar Sharma & Muhammad Azeem & Gaetano Luciano, 2023. "On Domatic Number of Some Rotationally Symmetric Graphs," Journal of Mathematics, Hindawi, vol. 2023, pages 1-11, February.
    7. A. El-Mesady & Omar Bazighifan & Mehar Ali Malik, 2022. "Construction of Mutually Orthogonal Graph Squares Using Novel Product Techniques," Journal of Mathematics, Hindawi, vol. 2022, pages 1-16, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kakinaka, Shinji & Umeno, Ken, 2021. "Exploring asymmetric multifractal cross-correlations of price–volatility and asymmetric volatility dynamics in cryptocurrency markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
    2. Panayiotis Theodossiou & Polina Ellina & Christos S. Savva, 2022. "Stochastic properties and pricing of bitcoin using a GJR-GARCH model with conditional skewness and kurtosis components," Review of Quantitative Finance and Accounting, Springer, vol. 59(2), pages 695-716, August.
    3. Flori, Andrea, 2019. "News and subjective beliefs: A Bayesian approach to Bitcoin investments," Research in International Business and Finance, Elsevier, vol. 50(C), pages 336-356.
    4. Stefano Martinazzi & Daniele Regoli & Andrea Flori, 2020. "A Tale of Two Layers: The Mutual Relationship between Bitcoin and Lightning Network," Risks, MDPI, vol. 8(4), pages 1-18, December.
    5. Tetsuya Takaishi, 2021. "Time-varying properties of asymmetric volatility and multifractality in Bitcoin," PLOS ONE, Public Library of Science, vol. 16(2), pages 1-21, February.
    6. Muhammad Anas & Syed Jawad Hussain Shahzad & Larisa Yarovaya, 2024. "The use of high-frequency data in cryptocurrency research: a meta-review of literature with bibliometric analysis," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 10(1), pages 1-31, December.
    7. da Cunha, C.R. & da Silva, R., 2020. "Relevant stylized facts about bitcoin: Fluctuations, first return probability, and natural phenomena," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 550(C).
    8. Garcia-Jorcano, Laura & Benito, Sonia, 2020. "Studying the properties of the Bitcoin as a diversifying and hedging asset through a copula analysis: Constant and time-varying," Research in International Business and Finance, Elsevier, vol. 54(C).
    9. López-Martín, Carmen & Arguedas-Sanz, Raquel & Muela, Sonia Benito, 2022. "A cryptocurrency empirical study focused on evaluating their distribution functions," International Review of Economics & Finance, Elsevier, vol. 79(C), pages 387-407.
    10. Fasanya, Ismail O. & Oyewole, Oluwatomisin & Dauda, Mariam, 2023. "Uncertainty due to infectious diseases and bitcoin-gold nexus: Evidence from a non-parametric causality-in-quantiles approach," Resources Policy, Elsevier, vol. 82(C).
    11. Eom, Cheoljun & Kaizoji, Taisei & Kang, Sang Hoon & Pichl, Lukas, 2019. "Bitcoin and investor sentiment: Statistical characteristics and predictability," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 511-521.
    12. Tetsuya Takaishi & Takanori Adachi, 2019. "Market efficiency, liquidity, and multifractality of Bitcoin: A dynamic study," Papers 1902.09253, arXiv.org.
    13. Un, Kuok Sin & Ausloos, Marcel, 2022. "Equity premium prediction: Taking into account the role of long, even asymmetric, swings in stock market behavior," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 608(P1).
    14. Thabani Ndlovu & Delson Chikobvu, 2023. "A Wavelet-Decomposed WD-ARMA-GARCH-EVT Model Approach to Comparing the Riskiness of the BitCoin and South African Rand Exchange Rates," Data, MDPI, vol. 8(7), pages 1-24, July.
    15. Panagiotidis, Theodore & Stengos, Thanasis & Vravosinos, Orestis, 2019. "The effects of markets, uncertainty and search intensity on bitcoin returns," International Review of Financial Analysis, Elsevier, vol. 63(C), pages 220-242.
    16. Lahmiri, Salim & Bekiros, Stelios, 2020. "Big data analytics using multi-fractal wavelet leaders in high-frequency Bitcoin markets," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
    17. Choi, Sun-Yong, 2021. "Analysis of stock market efficiency during crisis periods in the US stock market: Differences between the global financial crisis and COVID-19 pandemic," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 574(C).
    18. Telli, Şahin & Chen, Hongzhuan, 2020. "Multifractal behavior in return and volatility series of Bitcoin and gold in comparison," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    19. Takaishi, Tetsuya & Adachi, Takanori, 2018. "Taylor effect in Bitcoin time series," Economics Letters, Elsevier, vol. 172(C), pages 5-7.
    20. Tetsuya Takaishi & Takanori Adachi, 2020. "Market Efficiency, Liquidity, and Multifractality of Bitcoin: A Dynamic Study," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 27(1), pages 145-154, March.

    More about this item

    Keywords

    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:8:p:1133-:d:1372842. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.