IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i5p758-d1350634.html
   My bibliography  Save this article

Consequential Advancements of Self-Supervised Learning (SSL) in Deep Learning Contexts

Author

Listed:
  • Mohammed Majid Abdulrazzaq

    (Department of Computer Engineering, Demir Celik Campus, Karabuk University, 78050 Karabuk, Turkey
    Computer Center, University of Anbar, Anbar 31001, Iraq)

  • Nehad T. A. Ramaha

    (Department of Computer Engineering, Demir Celik Campus, Karabuk University, 78050 Karabuk, Turkey)

  • Alaa Ali Hameed

    (Department of Computer Engineering, Faculty of Engineering and Natural Sciences, Istinye University, 34396 Istanbul, Turkey)

  • Mohammad Salman

    (College of Engineering and Technology, American University of the Middle East, Egaila 54200, Kuwait)

  • Dong Keon Yon

    (Center for Digital Health, Medical Science Research Institute, Kyung Hee University Medical Center, Kyung Hee University, Seoul 02453, Republic of Korea)

  • Norma Latif Fitriyani

    (Department of Artificial Intelligence and Data Science, Sejong University, Seoul 05006, Republic of Korea)

  • Muhammad Syafrudin

    (Department of Artificial Intelligence and Data Science, Sejong University, Seoul 05006, Republic of Korea)

  • Seung Won Lee

    (Department of Precision Medicine, School of Medicine, Sungkyunkwan University, Suwon 16419, Republic of Korea)

Abstract

Self-supervised learning (SSL) is a potential deep learning (DL) technique that uses massive volumes of unlabeled data to train neural networks. SSL techniques have evolved in response to the poor classification performance of conventional and even modern machine learning (ML) and DL models of enormous unlabeled data produced periodically in different disciplines. However, the literature does not fully address SSL’s practicalities and workabilities necessary for industrial engineering and medicine. Accordingly, this thorough review is administered to identify these prominent possibilities for prediction, focusing on industrial and medical fields. This extensive survey, with its pivotal outcomes, could support industrial engineers and medical personnel in efficiently predicting machinery faults and patients’ ailments without referring to traditional numerical models that require massive computational budgets, time, storage, and effort for data annotation. Additionally, the review’s numerous addressed ideas could encourage industry and healthcare actors to take SSL principles into an agile application to achieve precise maintenance prognostics and illness diagnosis with remarkable levels of accuracy and feasibility, simulating functional human thinking and cognition without compromising prediction efficacy.

Suggested Citation

  • Mohammed Majid Abdulrazzaq & Nehad T. A. Ramaha & Alaa Ali Hameed & Mohammad Salman & Dong Keon Yon & Norma Latif Fitriyani & Muhammad Syafrudin & Seung Won Lee, 2024. "Consequential Advancements of Self-Supervised Learning (SSL) in Deep Learning Contexts," Mathematics, MDPI, vol. 12(5), pages 1-42, March.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:5:p:758-:d:1350634
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/5/758/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/5/758/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tian Wang & Meina Qiao & Mengyi Zhang & Yi Yang & Hichem Snoussi, 2020. "Data-driven prognostic method based on self-supervised learning approaches for fault detection," Journal of Intelligent Manufacturing, Springer, vol. 31(7), pages 1611-1619, October.
    2. Ding, Yifei & Zhuang, Jichao & Ding, Peng & Jia, Minping, 2022. "Self-supervised pretraining via contrast learning for intelligent incipient fault detection of bearings," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ding, Yifei & Zhuang, Jichao & Ding, Peng & Jia, Minping, 2022. "Self-supervised pretraining via contrast learning for intelligent incipient fault detection of bearings," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    2. Shi, Yaowei & Deng, Aidong & Deng, Minqiang & Xu, Meng & Liu, Yang & Ding, Xue & Li, Jing, 2022. "Transferable adaptive channel attention module for unsupervised cross-domain fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    3. Abdellatif Elmouatamid & Brian Fricke & Jian Sun & Philip W. T. Pong, 2023. "Air Conditioning Systems Fault Detection and Diagnosis-Based Sensing and Data-Driven Approaches," Energies, MDPI, vol. 16(12), pages 1-20, June.
    4. Fang, Xiaoyu & Qu, Jianfeng & Chai, Yi, 2023. "Self-supervised intermittent fault detection for analog circuits guided by prior knowledge," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    5. Lu-jun Cui & Man-ying Sun & Yan-long Cao & Qi-jian Zhao & Wen-han Zeng & Shi-rui Guo, 2021. "A novel tolerance geometric method based on machine learning," Journal of Intelligent Manufacturing, Springer, vol. 32(3), pages 799-821, March.
    6. Chia-Yen Lee & Chen-Fu Chien, 2022. "Pitfalls and protocols of data science in manufacturing practice," Journal of Intelligent Manufacturing, Springer, vol. 33(5), pages 1189-1207, June.
    7. Zuo, Lin & Xu, Fengjie & Zhang, Changhua & Xiahou, Tangfan & Liu, Yu, 2022. "A multi-layer spiking neural network-based approach to bearing fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    8. Shi, Yaowei & Deng, Aidong & Deng, Minqiang & Xu, Meng & Liu, Yang & Ding, Xue & Bian, Wenbin, 2023. "Domain augmentation generalization network for real-time fault diagnosis under unseen working conditions," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    9. Ding, Yifei & Jia, Minping & Zhuang, Jichao & Cao, Yudong & Zhao, Xiaoli & Lee, Chi-Guhn, 2023. "Deep imbalanced domain adaptation for transfer learning fault diagnosis of bearings under multiple working conditions," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    10. Zheng, Niannian & Luan, Xiaoli & Shardt, Yuri A.W. & Liu, Fei, 2024. "Dynamic-controlled principal component analysis for fault detection and automatic recovery," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    11. Zitong Yan & Hongmei Liu, 2022. "SMoCo: A Powerful and Efficient Method Based on Self-Supervised Learning for Fault Diagnosis of Aero-Engine Bearing under Limited Data," Mathematics, MDPI, vol. 10(15), pages 1-24, August.
    12. Panjapornpon, Chanin & Bardeeniz, Santi & Hussain, Mohamed Azlan, 2023. "Deep learning approach for energy efficiency prediction with signal monitoring reliability for a vinyl chloride monomer process," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    13. Dong, Shaojiang & Xiao, Jiafeng & Hu, Xiaolin & Fang, Nengwei & Liu, Lanhui & Yao, Jinbao, 2023. "Deep transfer learning based on Bi-LSTM and attention for remaining useful life prediction of rolling bearing," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    14. Jinhai Chen & Wenyuan Zhang & Heng Wang, 2021. "Intelligent bearing structure and temperature field analysis based on finite element simulation for sustainable and green manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 32(3), pages 745-756, March.
    15. Li, Xin & Li, Yong & Yan, Ke & Shao, Haidong & (Jing) Lin, Janet, 2023. "Intelligent fault diagnosis of bevel gearboxes using semi-supervised probability support matrix machine and infrared imaging," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    16. Youngju Kim & Hoyeop Lee & Chang Ouk Kim, 2023. "A variational autoencoder for a semiconductor fault detection model robust to process drift due to incomplete maintenance," Journal of Intelligent Manufacturing, Springer, vol. 34(2), pages 529-540, February.
    17. Liu, Shaowei & Jiang, Hongkai & Wu, Zhenghong & Yi, Zichun & Wang, Ruixin, 2023. "Intelligent fault diagnosis of rotating machinery using a multi-source domain adaptation network with adversarial discrepancy matching," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    18. Shao, Kaixuan & He, Yigang & Xing, Zhikai & Du, Bolun, 2023. "Detecting wind turbine anomalies using nonlinear dynamic parameters-assisted machine learning with normal samples," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    19. Zheng, Jianqin & Wang, Chang & Liang, Yongtu & Liao, Qi & Li, Zhuochao & Wang, Bohong, 2022. "Deeppipe: A deep-learning method for anomaly detection of multi-product pipelines," Energy, Elsevier, vol. 259(C).
    20. Wang, Yilin & Li, Yuanxiang & Zhang, Yuxuan & Lei, Jia & Yu, Yifei & Zhang, Tongtong & Yang, Yongshen & Zhao, Honghua, 2024. "Incorporating prior knowledge into self-supervised representation learning for long PHM signal," Reliability Engineering and System Safety, Elsevier, vol. 241(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:5:p:758-:d:1350634. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.