IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i5p624-d1342315.html
   My bibliography  Save this article

Designing Ecotourism Routes with Time-Dependent Benefits along Arcs and Waiting Times at Nodes

Author

Listed:
  • Ramón Piedra-de-la-Cuadra

    (Departamento de Matemática Aplicada I, Universidad de Sevilla, Avenida Reina Mercedes s/n, 41012 Seville, Spain
    Instituto de Matemáticas de la Universidad de Sevilla (IMUS), Universidad de Sevilla, Avenida Reina Mercedes s/n, 41012 Seville, Spain)

  • Francisco A. Ortega

    (Departamento de Matemática Aplicada I, Universidad de Sevilla, Avenida Reina Mercedes s/n, 41012 Seville, Spain
    Instituto de Matemáticas de la Universidad de Sevilla (IMUS), Universidad de Sevilla, Avenida Reina Mercedes s/n, 41012 Seville, Spain)

Abstract

Ecotourism routes serve as powerful tools for fostering environmental awareness. To achieve this, it is crucial to design itineraries within natural parks that strike a balance between visitor experience and ecological preservation. Limiting the duration of visits prevents undue strain on both visitors and ecosystems. Effective routes should showcase high biodiversity, traversing diverse sites to enhance knowledge acquisition. Considering natural factors such as light conditions and climate, it is prudent to tailor visiting times to optimize the experience. Therefore, it makes sense to incorporate time-dependent benefits at arcs and the possibility of introducing waiting times at nodes in the design models. These two characteristics have enriched the optimization models developed to solve the tourist trip design problem based on maximizing benefit only when points of interest are visited. However, the specific application of these aforementioned characteristics and enriched optimization models to the arc orientation problem remains yet to be reported on and published in the literature. Our contribution addresses this gap, proposing a route design model with scenic value in the arches of the graph where the benefits perceived by travelers are maximized, taking into account a diversity of evaluations depending on the time of starting the trip through each arc.

Suggested Citation

  • Ramón Piedra-de-la-Cuadra & Francisco A. Ortega, 2024. "Designing Ecotourism Routes with Time-Dependent Benefits along Arcs and Waiting Times at Nodes," Mathematics, MDPI, vol. 12(5), pages 1-15, February.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:5:p:624-:d:1342315
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/5/624/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/5/624/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Srinivasan, Karthik K. & Prakash, A.A. & Seshadri, Ravi, 2014. "Finding most reliable paths on networks with correlated and shifted log–normal travel times," Transportation Research Part B: Methodological, Elsevier, vol. 66(C), pages 110-128.
    2. Deitch, Ray & Ladany, Shaul P., 2000. "The one-period bus touring problem: Solved by an effective heuristic for the orienteering tour problem and improvement algorithm," European Journal of Operational Research, Elsevier, vol. 127(1), pages 69-77, November.
    3. Gunawan, Aldy & Lau, Hoong Chuin & Vansteenwegen, Pieter, 2016. "Orienteering Problem: A survey of recent variants, solution approaches and applications," European Journal of Operational Research, Elsevier, vol. 255(2), pages 315-332.
    4. Vansteenwegen, Pieter & Souffriau, Wouter & Oudheusden, Dirk Van, 2011. "The orienteering problem: A survey," European Journal of Operational Research, Elsevier, vol. 209(1), pages 1-10, February.
    5. Chao, I-Ming & Golden, Bruce L. & Wasil, Edward A., 1996. "The team orienteering problem," European Journal of Operational Research, Elsevier, vol. 88(3), pages 464-474, February.
    6. Dominique Feillet & Pierre Dejax & Michel Gendreau, 2005. "The Profitable Arc Tour Problem: Solution with a Branch-and-Price Algorithm," Transportation Science, INFORMS, vol. 39(4), pages 539-552, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ruiz-Meza, José & Montoya-Torres, Jairo R., 2022. "A systematic literature review for the tourist trip design problem: Extensions, solution techniques and future research lines," Operations Research Perspectives, Elsevier, vol. 9(C).
    2. Antonio R. Uguina & Juan F. Gomez & Javier Panadero & Anna Martínez-Gavara & Angel A. Juan, 2024. "A Learnheuristic Algorithm Based on Thompson Sampling for the Heterogeneous and Dynamic Team Orienteering Problem," Mathematics, MDPI, vol. 12(11), pages 1-19, June.
    3. Majsa Ammouriova & Massimo Bertolini & Juliana Castaneda & Angel A. Juan & Mattia Neroni, 2022. "A Heuristic-Based Simulation for an Education Process to Learn about Optimization Applications in Logistics and Transportation," Mathematics, MDPI, vol. 10(5), pages 1-18, March.
    4. Gulcin Dinc Yalcin & Hilal Malta & Seher Saylik, 2023. "A new mathematical model and a heuristic algorithm for the tourist trip design problem under new constraints: a real-world application," OPSEARCH, Springer;Operational Research Society of India, vol. 60(4), pages 1703-1730, December.
    5. Afsaneh Amiri & Majid Salari, 2019. "Time-constrained maximal covering routing problem," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 41(2), pages 415-468, June.
    6. Shiri, Davood & Akbari, Vahid & Hassanzadeh, Ali, 2024. "The Capacitated Team Orienteering Problem: An online optimization framework with predictions of unknown accuracy," Transportation Research Part B: Methodological, Elsevier, vol. 185(C).
    7. Qinxiao Yu & Yossiri Adulyasak & Louis-Martin Rousseau & Ning Zhu & Shoufeng Ma, 2022. "Team Orienteering with Time-Varying Profit," INFORMS Journal on Computing, INFORMS, vol. 34(1), pages 262-280, January.
    8. Archetti, Claudia & Bertazzi, Luca & Laganà, Demetrio & Vocaturo, Francesca, 2017. "The Undirected Capacitated General Routing Problem with Profits," European Journal of Operational Research, Elsevier, vol. 257(3), pages 822-833.
    9. Zhao, Yanlu & Alfandari, Laurent, 2020. "Design of diversified package tours for the digital travel industry : A branch-cut-and-price approach," European Journal of Operational Research, Elsevier, vol. 285(3), pages 825-843.
    10. Roberto Aringhieri & Sara Bigharaz & Davide Duma & Alberto Guastalla, 2022. "Fairness in ambulance routing for post disaster management," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 30(1), pages 189-211, March.
    11. Orlis, Christos & Laganá, Demetrio & Dullaert, Wout & Vigo, Daniele, 2020. "Distribution with Quality of Service Considerations: The Capacitated Routing Problem with Profits and Service Level Requirements," Omega, Elsevier, vol. 93(C).
    12. Christos Orlis & Nicola Bianchessi & Roberto Roberti & Wout Dullaert, 2020. "The Team Orienteering Problem with Overlaps: An Application in Cash Logistics," Transportation Science, INFORMS, vol. 54(2), pages 470-487, March.
    13. Zhang, Guowei & Jia, Ning & Zhu, Ning & Adulyasak, Yossiri & Ma, Shoufeng, 2023. "Robust drone selective routing in humanitarian transportation network assessment," European Journal of Operational Research, Elsevier, vol. 305(1), pages 400-428.
    14. Li, Jiaojiao & Zhu, Jianghan & Peng, Guansheng & Wang, Jianjiang & Zhen, Lu & Demeulemeester, Erik, 2024. "Branch-Price-and-Cut algorithms for the team orienteering problem with interval-varying profits," European Journal of Operational Research, Elsevier, vol. 319(3), pages 793-807.
    15. Freeman, Nickolas K. & Keskin, Burcu B. & Çapar, İbrahim, 2018. "Attractive orienteering problem with proximity and timing interactions," European Journal of Operational Research, Elsevier, vol. 266(1), pages 354-370.
    16. Roberto Aringhieri & Sara Bigharaz & Alessandro Druetto & Davide Duma & Andrea Grosso & Alberto Guastalla, 2024. "The daily swab test collection problem," Annals of Operations Research, Springer, vol. 335(3), pages 1449-1470, April.
    17. José Ruiz-Meza & Jairo R. Montoya-Torres, 2021. "Tourist trip design with heterogeneous preferences, transport mode selection and environmental considerations," Annals of Operations Research, Springer, vol. 305(1), pages 227-249, October.
    18. Katharina Glock & Anne Meyer, 2020. "Mission Planning for Emergency Rapid Mapping with Drones," Transportation Science, INFORMS, vol. 54(2), pages 534-560, March.
    19. Dursunoglu, Cagla F. & Arslan, Okan & Demir, Sebnem Manolya & Kara, Bahar Y. & Laporte, Gilbert, 2025. "A unifying framework for selective routing problems," European Journal of Operational Research, Elsevier, vol. 320(1), pages 1-19.
    20. He, Mu & Wu, Qinghua & Benlic, Una & Lu, Yongliang & Chen, Yuning, 2024. "An effective multi-level memetic search with neighborhood reduction for the clustered team orienteering problem," European Journal of Operational Research, Elsevier, vol. 318(3), pages 778-801.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:5:p:624-:d:1342315. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.