IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i16p2542-d1458284.html
   My bibliography  Save this article

Leveraging a Hybrid Machine Learning Approach for Compressive Strength Estimation of Roller-Compacted Concrete with Recycled Aggregates

Author

Listed:
  • Nhat-Duc Hoang

    (Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam
    Faculty of Civil Engineering, Duy Tan University, Da Nang 550000, Vietnam)

Abstract

In recent years, the use of recycled aggregate (RA) in roller-compacted concrete (RCC) for pavement construction has been increasingly attractive due to various environmental and economic benefits. Early determination of the compressive strength (CS) is crucial for the construction and maintenance of pavement. This paper presents the idea of combining metaheuristics and an advanced gradient boosting regressor for estimating the compressive strength of roller-compacted concrete containing RA. A dataset, including 270 samples, has been collected from previous experimental works. Recycled aggregates of construction demolition waste, reclaimed asphalt pavement, and industrial slag waste are considered in this dataset. The extreme gradient boosting machine (XGBoost) is employed to generalize a functional mapping between the CS and its influencing factors. A recently proposed gradient-based optimizer (GBO) is used to fine-tune the training phase of XGBoost in a data-driven manner. Experimental results show that the hybrid GBO-XGBoost model achieves outstanding prediction accuracy with a root mean square error of 2.64 and a mean absolute percentage error less than 8%. The proposed method is capable of explaining up to 94% of the variation in the CS. Additionally, an asymmetric loss function is implemented with GBO-XGBoost to mitigate the overestimation of CS values. It was found that the proposed model trained with the asymmetric loss function helped reduce overestimated cases by 17%. Hence, the newly developed GBO-XGBoost can be a robust and reliable approach for predicting the CS of RCC using RA.

Suggested Citation

  • Nhat-Duc Hoang, 2024. "Leveraging a Hybrid Machine Learning Approach for Compressive Strength Estimation of Roller-Compacted Concrete with Recycled Aggregates," Mathematics, MDPI, vol. 12(16), pages 1-29, August.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:16:p:2542-:d:1458284
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/16/2542/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/16/2542/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rezk, Hegazy & Ferahtia, Seydali & Djeroui, Ali & Chouder, Aissa & Houari, Azeddine & Machmoum, Mohamed & Abdelkareem, Mohammad Ali, 2022. "Optimal parameter estimation strategy of PEM fuel cell using gradient-based optimizer," Energy, Elsevier, vol. 239(PC).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Saka, Kenan & Orhan, Mehmet Fatih, 2022. "Analysis of stack operating conditions for a polymer electrolyte membrane fuel cell," Energy, Elsevier, vol. 258(C).
    2. Hegazy Rezk & A. G. Olabi & Tabbi Wilberforce & Enas Taha Sayed, 2023. "A Comprehensive Review and Application of Metaheuristics in Solving the Optimal Parameter Identification Problems," Sustainability, MDPI, vol. 15(7), pages 1-24, March.
    3. Fathy, Ahmed & Rezk, Hegazy & Alharbi, Abdullah G. & Yousri, Dalia, 2023. "Proton exchange membrane fuel cell model parameters identification using Chaotically based-bonobo optimizer," Energy, Elsevier, vol. 268(C).
    4. Hegazy Rezk & Tabbi Wilberforce & A. G. Olabi & Rania M. Ghoniem & Mohammad Ali Abdelkareem & Enas Taha Sayed, 2023. "Fuzzy Modelling and Optimization to Decide Optimal Parameters of the PEMFC," Energies, MDPI, vol. 16(12), pages 1-16, June.
    5. Ghareeb Moustafa & Mostafa Elshahed & Ahmed R. Ginidi & Abdullah M. Shaheen & Hany S. E. Mansour, 2023. "A Gradient-Based Optimizer with a Crossover Operator for Distribution Static VAR Compensator (D-SVC) Sizing and Placement in Electrical Systems," Mathematics, MDPI, vol. 11(5), pages 1-30, February.
    6. Hegazy Rezk & Tabbi Wilberforce & A. G. Olabi & Rania M. Ghoniem & Enas Taha Sayed & Mohammad Ali Abdelkareem, 2023. "Optimal Parameter Identification of a PEM Fuel Cell Using Recent Optimization Algorithms," Energies, MDPI, vol. 16(14), pages 1-20, July.
    7. Alaa A. Zaky & Rania M. Ghoniem & F. Selim, 2023. "Precise Modeling of Proton Exchange Membrane Fuel Cell Using the Modified Bald Eagle Optimization Algorithm," Sustainability, MDPI, vol. 15(13), pages 1-16, July.
    8. Rezk, Hegazy & Olabi, A.G. & Ferahtia, Seydali & Sayed, Enas Taha, 2022. "Accurate parameter estimation methodology applied to model proton exchange membrane fuel cell," Energy, Elsevier, vol. 255(C).
    9. Nassef, Ahmed M. & Houssein, Essam H. & Helmy, Bahaa El-din & Rezk, Hegazy, 2022. "Modified honey badger algorithm based global MPPT for triple-junction solar photovoltaic system under partial shading condition and global optimization," Energy, Elsevier, vol. 254(PA).
    10. Wang, Renkang & Li, Kai & Ming, Yuan & Guo, Wenjun & Deng, Bo & Tang, Hao, 2024. "An enhanced salp swarm algorithm with chaotic mapping and dynamic learning for optimizing purge process of proton exchange membrane fuel cell systems," Energy, Elsevier, vol. 308(C).
    11. Santos, Diogo F.M. & Ferreira, Rui B. & Falcão, D.S. & Pinto, A.M.F.R., 2022. "Evaluation of a fuel cell system designed for unmanned aerial vehicles," Energy, Elsevier, vol. 253(C).
    12. Hachana, Oussama & El-Fergany, Attia A., 2022. "Efficient PEM fuel cells parameters identification using hybrid artificial bee colony differential evolution optimizer," Energy, Elsevier, vol. 250(C).
    13. Huang, Weifeng & Niu, Tong & Zhang, Caizhi & Fu, Zuhang & Zhang, Yuqi & Zhou, Weijiang & Pan, Zehua & Zhang, Kaiqing, 2023. "Experimental study of the performance degradation of proton exchange membrane fuel cell based on a multi-module stack under selected load profiles by clustering algorithm," Energy, Elsevier, vol. 270(C).
    14. Yang, Bo & Liang, Boxiao & Qian, Yucun & Zheng, Ruyi & Su, Shi & Guo, Zhengxun & Jiang, Lin, 2024. "Parameter identification of PEMFC via feedforward neural network-pelican optimization algorithm," Applied Energy, Elsevier, vol. 361(C).
    15. Chang, Huawei & Cai, Fengyang & Yu, Xianxian & Duan, Chen & Chan, Siew Hwa & Tu, Zhengkai, 2023. "Experimental study on the thermal management of an open-cathode air-cooled proton exchange membrane fuel cell stack with ultra-thin metal bipolar plates," Energy, Elsevier, vol. 263(PA).
    16. Ćalasan, Martin & Abdel Aleem, Shady H.E. & Hasanien, Hany M. & Alaas, Zuhair M. & Ali, Ziad M., 2023. "An innovative approach for mathematical modeling and parameter estimation of PEM fuel cells based on iterative Lambert W function," Energy, Elsevier, vol. 264(C).
    17. Yuan, Yongliang & Yang, Qingkang & Ren, Jianji & Mu, Xiaokai & Wang, Zhenxi & Shen, Qianlong & Zhao, Wu, 2024. "Attack-defense strategy assisted osprey optimization algorithm for PEMFC parameters identification," Renewable Energy, Elsevier, vol. 225(C).
    18. Motalleb Miri & Ivan Tolj & Frano Barbir, 2024. "Review of Proton Exchange Membrane Fuel Cell-Powered Systems for Stationary Applications Using Renewable Energy Sources," Energies, MDPI, vol. 17(15), pages 1-26, August.
    19. Abdel-Basset, Mohamed & Mohamed, Reda & Abouhawwash, Mohamed, 2023. "On the facile and accurate determination of the highly accurate recent methods to optimize the parameters of different fuel cells: Simulations and analysis," Energy, Elsevier, vol. 272(C).
    20. Wilberforce, Tabbi & Rezk, Hegazy & Olabi, A.G. & Epelle, Emmanuel I. & Abdelkareem, Mohammad Ali, 2023. "Comparative analysis on parametric estimation of a PEM fuel cell using metaheuristics algorithms," Energy, Elsevier, vol. 262(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:16:p:2542-:d:1458284. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.