IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i12p1863-d1415168.html
   My bibliography  Save this article

Accelerated Driving-Training-Based Optimization for Solving Constrained Bi-Objective Stochastic Optimization Problems

Author

Listed:
  • Shih-Cheng Horng

    (Department of Computer Science & Information Engineering, Chaoyang University of Technology, Taichung 413310, Taiwan)

  • Shieh-Shing Lin

    (Department of Electrical Engineering, St. John’s University, New Taipei City 251303, Taiwan)

Abstract

The constrained bi-objective stochastic optimization problem (CBSOP) considers the optimization problem with stochastic bi-objective functions subject to deterministic constraints. The CBSOP is part of a set of hard combinatorial optimization problems regarding time complexity. Ordinal optimization (OO) theory provides a commonly recognized structure to handle hard combinatorial optimization problems. Although OO theory may solve hard combinatorial optimization problems quickly, the deterministic constraints will critically influence computing performance. This work presents a metaheuristic approach that combines driving-training-based optimization (DTBO) with ordinal optimization (OO), abbreviated as DTOO, to solve the CBSOP with a large design space. The DTOO approach comprises three major components: the surrogate model, diversification, and intensification. In the surrogate model, the regularized minimal-energy tensor product with cubic Hermite splines is utilized as a fitness estimation of design. In diversification, an accelerated driving-training-based optimization is presented to determine N remarkable designs from the design space. In intensification, a reinforced optimal computing budget allocation is used to find an extraordinary design from the N remarkable designs. The DTOO approach is applied to a medical resource allocation problem in the emergency department. Simulation results obtained by the DTOO approach are compared with three heuristic approaches to examine the performance of the DTOO approach. Test results show that the DTOO approach obtains an extraordinary design with higher solution quality and computational efficiency than the three heuristic approaches.

Suggested Citation

  • Shih-Cheng Horng & Shieh-Shing Lin, 2024. "Accelerated Driving-Training-Based Optimization for Solving Constrained Bi-Objective Stochastic Optimization Problems," Mathematics, MDPI, vol. 12(12), pages 1-17, June.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:12:p:1863-:d:1415168
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/12/1863/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/12/1863/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Horng, Shih-Cheng & Lin, Shieh-Shing, 2024. "Advanced golden jackal optimization for solving the constrained integer stochastic optimization problems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 217(C), pages 188-201.
    2. Shih-Cheng Horng & Shieh-Shing Lin, 2023. "Improved Beluga Whale Optimization for Solving the Simulation Optimization Problems with Stochastic Constraints," Mathematics, MDPI, vol. 11(8), pages 1-17, April.
    3. Babli Kumari & Izhar Ahmad, 2023. "Penalty function method for a variational inequality on Hadamard manifolds," OPSEARCH, Springer;Operational Research Society of India, vol. 60(1), pages 527-538, March.
    4. Yen-Yi Feng & I-Chin Wu & Tzu-Li Chen, 2017. "Stochastic resource allocation in emergency departments with a multi-objective simulation optimization algorithm," Health Care Management Science, Springer, vol. 20(1), pages 55-75, March.
    5. Mohammed H. Qais & Hany M. Hasanien & Saad Alghuwainem & Ka Hong Loo, 2023. "Propagation Search Algorithm: A Physics-Based Optimizer for Engineering Applications," Mathematics, MDPI, vol. 11(20), pages 1-26, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ruoyan Sun & David Mendez, 2019. "Finding the optimal mix of smoking initiation and cessation interventions to reduce smoking prevalence," PLOS ONE, Public Library of Science, vol. 14(3), pages 1-12, March.
    2. Shangkun Deng & Yingke Zhu & Xiaoru Huang & Shuangyang Duan & Zhe Fu, 2022. "High-Frequency Direction Forecasting of the Futures Market Using a Machine-Learning-Based Method," Future Internet, MDPI, vol. 14(6), pages 1-21, June.
    3. Ruiheng Li & Yi Di & Qiankun Zuo & Hao Tian & Lu Gan, 2023. "Enhanced Whale Optimization Algorithm for Improved Transient Electromagnetic Inversion in the Presence of Induced Polarization Effects," Mathematics, MDPI, vol. 11(19), pages 1-20, October.
    4. Miguel Angel Ortíz-Barrios & Dayana Milena Coba-Blanco & Juan-José Alfaro-Saíz & Daniela Stand-González, 2021. "Process Improvement Approaches for Increasing the Response of Emergency Departments against the COVID-19 Pandemic: A Systematic Review," IJERPH, MDPI, vol. 18(16), pages 1-31, August.
    5. Sanjay Mehrotra & Hamed Rahimian & Masoud Barah & Fengqiao Luo & Karolina Schantz, 2020. "A model of supply‐chain decisions for resource sharing with an application to ventilator allocation to combat COVID‐19," Naval Research Logistics (NRL), John Wiley & Sons, vol. 67(5), pages 303-320, August.
    6. Chenmei Teng & Poshan Yu & Liwen Liu, 2024. "A cooperative optimization model and enhanced algorithm for guided strategies in emergency mobile facilities," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-11, December.
    7. Farouq Halawa & Sreenath Chalil Madathil & Alice Gittler & Mohammad T. Khasawneh, 2020. "Advancing evidence-based healthcare facility design: a systematic literature review," Health Care Management Science, Springer, vol. 23(3), pages 453-480, September.
    8. Miguel Angel Ortíz-Barrios & Juan-José Alfaro-Saíz, 2020. "Methodological Approaches to Support Process Improvement in Emergency Departments: A Systematic Review," IJERPH, MDPI, vol. 17(8), pages 1-41, April.
    9. Chang Wook Kang & Muhammad Imran & Muhammad Omair & Waqas Ahmed & Misbah Ullah & Biswajit Sarkar, 2019. "Stochastic-Petri Net Modeling and Optimization for Outdoor Patients in Building Sustainable Healthcare System Considering Staff Absenteeism," Mathematics, MDPI, vol. 7(6), pages 1-26, June.
    10. Marco Boresta & Tommaso Giovannelli & Massimo Roma, 2024. "Managing low–acuity patients in an Emergency Department through simulation–based multiobjective optimization using a neural network metamodel," Health Care Management Science, Springer, vol. 27(3), pages 415-435, September.
    11. Jesús Isaac Vázquez-Serrano & Rodrigo E. Peimbert-García & Leopoldo Eduardo Cárdenas-Barrón, 2021. "Discrete-Event Simulation Modeling in Healthcare: A Comprehensive Review," IJERPH, MDPI, vol. 18(22), pages 1-20, November.
    12. Davide Duma & Roberto Aringhieri, 2020. "An ad hoc process mining approach to discover patient paths of an Emergency Department," Flexible Services and Manufacturing Journal, Springer, vol. 32(1), pages 6-34, March.
    13. Hainan Guo & Haobin Gu & Yu Zhou & Jiaxuan Peng, 2022. "A data-driven multi-fidelity simulation optimization for medical staff configuration at an emergency department in Hong Kong," Flexible Services and Manufacturing Journal, Springer, vol. 34(2), pages 238-262, June.
    14. Horng, Shih-Cheng & Lin, Shieh-Shing, 2024. "Advanced golden jackal optimization for solving the constrained integer stochastic optimization problems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 217(C), pages 188-201.
    15. Zhou, Liping & Geng, Na & Jiang, Zhibin & Wang, Xiuxian, 2018. "Multi-objective capacity allocation of hospital wards combining revenue and equity," Omega, Elsevier, vol. 81(C), pages 220-233.
    16. Wang, Xiuxian & Matta, Andrea & Geng, Na & Zhou, Liping & Jiang, Zhibin, 2025. "Simulation-based emergency department staffing and scheduling optimization considering part-time work shifts," European Journal of Operational Research, Elsevier, vol. 321(2), pages 631-643.
    17. Xianhua Wu & Yaru Cao & Yang Xiao & Ji Guo, 2020. "Finding of urban rainstorm and waterlogging disasters based on microblogging data and the location-routing problem model of urban emergency logistics," Annals of Operations Research, Springer, vol. 290(1), pages 865-896, July.
    18. Duma, Davide & Aringhieri, Roberto, 2023. "Real-time resource allocation in the emergency department: A case study," Omega, Elsevier, vol. 117(C).
    19. R. J. Kuo & P. F. Song & Thi Phuong Quyen Nguyen & T. J. Yang, 2023. "An application of multi-objective simulation optimization to medical resource allocation for the emergency department in Taiwan," Annals of Operations Research, Springer, vol. 326(1), pages 199-221, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:12:p:1863-:d:1415168. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.