IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i9p2191-d1140591.html
   My bibliography  Save this article

Optimal Strategy of the Dynamic Mean-Variance Problem for Pairs Trading under a Fast Mean-Reverting Stochastic Volatility Model

Author

Listed:
  • Yaoyuan Zhang

    (School of Mathematical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China)

  • Dewen Xiong

    (School of Mathematical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China)

Abstract

We discuss the dynamic mean-variance (MV) problem for pairs trading with the assumptions that one of the security prices satisfies a stochastic volatility model (SVM) and the corresponding price spread follows an Ornstein–Uhlenbeck (OU) process. We provide a semi-closed-form of the optimal strategy based on the solution of a PDE, which is difficult to solve explicitly. Thus, we assume that one of the security prices satisfies the Scott model, a fast-mean-reverting volatility model, and give a closed-form approximation for the optimal strategy. Empirical studies, by using historical data from Chinese security markets, show that the Scott model produces a more stable strategy by better capturing mean-reverting volatility.

Suggested Citation

  • Yaoyuan Zhang & Dewen Xiong, 2023. "Optimal Strategy of the Dynamic Mean-Variance Problem for Pairs Trading under a Fast Mean-Reverting Stochastic Volatility Model," Mathematics, MDPI, vol. 11(9), pages 1-19, May.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:9:p:2191-:d:1140591
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/9/2191/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/9/2191/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chambers, Marcus J., 2016. "The estimation of continuous time models with mixed frequency data," Journal of Econometrics, Elsevier, vol. 193(2), pages 390-404.
    2. Tingjin Yan & Mei Choi Chiu & Hoi Ying Wong, 2022. "Pairs trading under delayed cointegration," Quantitative Finance, Taylor & Francis Journals, vol. 22(9), pages 1627-1648, September.
    3. Jim Gatheral & Thibault Jaisson & Mathieu Rosenbaum, 2018. "Volatility is rough," Quantitative Finance, Taylor & Francis Journals, vol. 18(6), pages 933-949, June.
    4. R. Cont, 2001. "Empirical properties of asset returns: stylized facts and statistical issues," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 223-236.
    5. Bertram, William K., 2010. "Analytic solutions for optimal statistical arbitrage trading," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(11), pages 2234-2243.
    6. Kiyoshi Suzuki, 2018. "Optimal pair-trading strategy over long/short/square positions—empirical study," Quantitative Finance, Taylor & Francis Journals, vol. 18(1), pages 97-119, January.
    7. Dong-Mei Zhu & Jia-Wen Gu & Feng-Hui Yu & Tak-Kuen Siu & Wai-Ki Ching, 2021. "Optimal pairs trading with dynamic mean-variance objective," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 94(1), pages 145-168, August.
    8. Scott, Louis O., 1987. "Option Pricing when the Variance Changes Randomly: Theory, Estimation, and an Application," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 22(4), pages 419-438, December.
    9. Tomas Björk & Agatha Murgoci & Xun Yu Zhou, 2014. "Mean–Variance Portfolio Optimization With State-Dependent Risk Aversion," Mathematical Finance, Wiley Blackwell, vol. 24(1), pages 1-24, January.
    10. Jun Liu & Allan Timmermann, 2013. "Optimal Convergence Trade Strategies," The Review of Financial Studies, Society for Financial Studies, vol. 26(4), pages 1048-1086.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abduraimova, Kumushoy, 2022. "Contagion and tail risk in complex financial networks," Journal of Banking & Finance, Elsevier, vol. 143(C).
    2. Josselin Garnier & Knut Sølna, 2018. "Option pricing under fast-varying and rough stochastic volatility," Annals of Finance, Springer, vol. 14(4), pages 489-516, November.
    3. Eduardo Abi Jaber, 2022. "The characteristic function of Gaussian stochastic volatility models: an analytic expression," Working Papers hal-02946146, HAL.
    4. Eduardo Abi Jaber, 2022. "The characteristic function of Gaussian stochastic volatility models: an analytic expression," Finance and Stochastics, Springer, vol. 26(4), pages 733-769, October.
    5. Chen, Zhimin & Ibragimov, Rustam, 2019. "One country, two systems? The heavy-tailedness of Chinese A- and H- share markets," Emerging Markets Review, Elsevier, vol. 38(C), pages 115-141.
    6. Hans Buhler & Blanka Horvath & Terry Lyons & Imanol Perez Arribas & Ben Wood, 2020. "A Data-driven Market Simulator for Small Data Environments," Papers 2006.14498, arXiv.org.
    7. Fenghui Yu & Wai-Ki Ching & Chufang Wu & Jia-Wen Gu, 2023. "Optimal Pairs Trading Strategies: A Stochastic Mean–Variance Approach," Journal of Optimization Theory and Applications, Springer, vol. 196(1), pages 36-55, January.
    8. Giulia Di Nunno & Kk{e}stutis Kubilius & Yuliya Mishura & Anton Yurchenko-Tytarenko, 2023. "From constant to rough: A survey of continuous volatility modeling," Papers 2309.01033, arXiv.org, revised Sep 2023.
    9. Michele Vodret & Iacopo Mastromatteo & Bence Tóth & Michael Benzaquen, 2023. "Microfounding GARCH models and beyond: a Kyle-inspired model with adaptive agents," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 18(3), pages 599-625, July.
    10. Stübinger, Johannes & Endres, Sylvia, 2017. "Pairs trading with a mean-reverting jump-diffusion model on high-frequency data," FAU Discussion Papers in Economics 10/2017, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
    11. Raul Merino & Jan Posp'iv{s}il & Tom'av{s} Sobotka & Tommi Sottinen & Josep Vives, 2019. "Decomposition formula for rough Volterra stochastic volatility models," Papers 1906.07101, arXiv.org, revised Aug 2019.
    12. Göncü, Ahmet & Karahan, Mehmet Oğuz & Kuzubaş, Tolga Umut, 2016. "A comparative goodness-of-fit analysis of distributions of some Lévy processes and Heston model to stock index returns," The North American Journal of Economics and Finance, Elsevier, vol. 36(C), pages 69-83.
    13. Yan, Tingjin & Chiu, Mei Choi & Wong, Hoi Ying, 2023. "Portfolio liquidation with delayed information," Economic Modelling, Elsevier, vol. 126(C).
    14. R. Vilela Mendes, 2022. "The fractional volatility model and rough volatility," Papers 2206.02205, arXiv.org.
    15. Kim, Hyun-Gyoon & Kim, See-Woo & Kim, Jeong-Hoon, 2024. "Variance and volatility swaps and options under the exponential fractional Ornstein–Uhlenbeck model," The North American Journal of Economics and Finance, Elsevier, vol. 72(C).
    16. Krauss, Christopher, 2015. "Statistical arbitrage pairs trading strategies: Review and outlook," FAU Discussion Papers in Economics 09/2015, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
    17. Tetsuya Takaishi, 2019. "Rough volatility of Bitcoin," Papers 1904.12346, arXiv.org.
    18. Elisa Alòs & Jorge A. León, 2021. "An Intuitive Introduction to Fractional and Rough Volatilities," Mathematics, MDPI, vol. 9(9), pages 1-22, April.
    19. Alessandro Bondi & Sergio Pulido & Simone Scotti, 2022. "The rough Hawkes Heston stochastic volatility model," Papers 2210.12393, arXiv.org.
    20. Katsuto Tanaka & Weilin Xiao & Jun Yu, 2020. "Maximum Likelihood Estimation for the Fractional Vasicek Model," Econometrics, MDPI, vol. 8(3), pages 1-28, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:9:p:2191-:d:1140591. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.