IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i6p1283-d1090529.html
   My bibliography  Save this article

A Robust Fractional-Order Control Scheme for PV-Penetrated Grid-Connected Microgrid

Author

Listed:
  • Nikhil Pachauri

    (Department of Mechatronics, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, India)

  • Vigneysh Thangavel

    (School of Electrical and Electronics Engineering, SASTRA Deemed to Be University, Thanjavur 613401, India)

  • Velamuri Suresh

    (Symbiosis Institute of Technology, Symbiosis International (Deemed University), Pune 412115, India)

  • Mvv Prasad Kantipudi

    (Symbiosis Institute of Technology, Symbiosis International (Deemed University), Pune 412115, India)

  • Hossam Kotb

    (Department of Electrical Power and Machines, Faculty of Engineering, Alexandria University, Alexandria 21544, Egypt)

  • Ravi Nath Tripathi

    (Nagamori Actuator Research Center, Kyoto University of Advanced Science, Kyoto 6158577, Japan)

  • Mohit Bajaj

    (Department of Electrical Engineering, Graphic Era (Deemed to Be University), Dehradun 248002, India
    Applied Science Research Center, Applied Science Private University, Amman 11931, Jordan)

Abstract

This article presents a new cascaded control strategy to control the power flow in a renewable-energy-based microgrid operating in grid-connected mode. The microgrid model is composed of an AC utility grid interfaced with a multi-functional grid interactive converter (MF-GIC) acting as a grid-forming converter, a photovoltaic (PV) power-generation system acting as grid-feeding distributed generation unit, and various sensitive/non-sensitive customer loads. The proposed control strategy consists of a fractional order PI (FO-PI) controller to smoothly regulate the power flow between the utility grid, distributed generation unit, and the customers. The proposed controller exploits the advantages of FO (Fractional Order) calculus in improving the steady-state and dynamic performance of the renewable-energy-based microgrid under various operating conditions and during system uncertainties. To tune the control parameters of the proposed controller, a recently developed evaporation-rate-based water-cycle algorithm (ERWCA) is utilized. The performance of the proposed control strategy is tested under various operating conditions to show its efficacy over the conventional controller. The result shows that the proposed controller is effective and robust in maintaining all the system parameters within limits under all operating conditions, including system uncertainties.

Suggested Citation

  • Nikhil Pachauri & Vigneysh Thangavel & Velamuri Suresh & Mvv Prasad Kantipudi & Hossam Kotb & Ravi Nath Tripathi & Mohit Bajaj, 2023. "A Robust Fractional-Order Control Scheme for PV-Penetrated Grid-Connected Microgrid," Mathematics, MDPI, vol. 11(6), pages 1-18, March.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:6:p:1283-:d:1090529
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/6/1283/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/6/1283/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nagaraju Dharavat & Suresh Kumar Sudabattula & Suresh Velamuri & Sachin Mishra & Naveen Kumar Sharma & Mohit Bajaj & Elmazeg Elgamli & Mokhtar Shouran & Salah Kamel, 2022. "Optimal Allocation of Renewable Distributed Generators and Electric Vehicles in a Distribution System Using the Political Optimization Algorithm," Energies, MDPI, vol. 15(18), pages 1-25, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohammad Suhail Khan & Chang-Hua Lin & Javed Ahmad & Mohammad Fahad & Hwa-Dong Liu, 2023. "A Novel DC Electronic Load Topology Incorporated with Model Predictive Control Approach," Mathematics, MDPI, vol. 11(15), pages 1-19, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thangaraj Yuvaraj & Thirukoilur Dhandapani Suresh & Arokiasamy Ananthi Christy & Thanikanti Sudhakar Babu & Benedetto Nastasi, 2023. "Modelling and Allocation of Hydrogen-Fuel-Cell-Based Distributed Generation to Mitigate Electric Vehicle Charging Station Impact and Reliability Analysis on Electrical Distribution Systems," Energies, MDPI, vol. 16(19), pages 1-31, September.
    2. Dominic Savio Abraham & Balaji Chandrasekar & Narayanamoorthi Rajamanickam & Pradeep Vishnuram & Venkatesan Ramakrishnan & Mohit Bajaj & Marian Piecha & Vojtech Blazek & Lukas Prokop, 2023. "Fuzzy-Based Efficient Control of DC Microgrid Configuration for PV-Energized EV Charging Station," Energies, MDPI, vol. 16(6), pages 1-17, March.
    3. Abdul Ghani Olabi & Enas Taha Sayed, 2023. "Developments in Hydrogen Fuel Cells," Energies, MDPI, vol. 16(5), pages 1-5, March.
    4. Soheil Younesi & Bahman Ahmadi & Oguzhan Ceylan & Aydogan Ozdemir, 2022. "Optimum Parallel Processing Schemes to Improve the Computation Speed for Renewable Energy Allocation and Sizing Problems," Energies, MDPI, vol. 15(24), pages 1-18, December.
    5. Pegah Alaee & Julius Bems & Amjad Anvari-Moghaddam, 2023. "A Review of the Latest Trends in Technical and Economic Aspects of EV Charging Management," Energies, MDPI, vol. 16(9), pages 1-28, April.
    6. Ajit Kumar Mohanty & Perli Suresh Babu & Surender Reddy Salkuti, 2022. "Fuzzy-Based Simultaneous Optimal Placement of Electric Vehicle Charging Stations, Distributed Generators, and DSTATCOM in a Distribution System," Energies, MDPI, vol. 15(22), pages 1-22, November.
    7. Zbigniew Kłosowski & Łukasz Mazur, 2023. "Influence of the Type of Receiver on Electrical Energy Losses in Power Grids," Energies, MDPI, vol. 16(15), pages 1-22, July.
    8. Sunday Adeleke Salimon & Gafari Abiola Adepoju & Isaiah Gbadegesin Adebayo & Harun Or Rashid Howlader & Samson Oladayo Ayanlade & Oludamilare Bode Adewuyi, 2023. "Impact of Distributed Generators Penetration Level on the Power Loss and Voltage Profile of Radial Distribution Networks," Energies, MDPI, vol. 16(4), pages 1-32, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:6:p:1283-:d:1090529. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.