IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i19p8819-d1763222.html
   My bibliography  Save this article

Multi-Objective GWO with Opposition-Based Learning for Optimal Wind Turbine DG Allocation Considering Uncertainty and Seasonal Variability

Author

Listed:
  • Abdullah Aljumah

    (School of Engineering, Lancaster University, Lancaster LA1 4YR, UK
    Department of Electrical Engineering, College of Engineering, Majmaah University, Al-Majmaah 11952, Saudi Arabia)

  • Ahmed Darwish

    (School of Engineering, Lancaster University, Lancaster LA1 4YR, UK)

Abstract

Optimally positioning renewable-based distributed generation (DG) units is vital for mitigating technical challenges in active distribution networks (ADNs). With the goal of achieving technical goals such as reduced losses and mitigated unstable voltage, two available optimization methods have been combined for positioning wind-energy DGs: grey wolf optimization (GWO) and opposition-based learning (OBL), which tries out opposite possibilities for each assessed population, thus addressing GWO’s susceptibility to becoming stuck in local optima. This new fusion technique enhances the algorithm’s scrutiny of each area under consideration and reduces the likelihood of premature convergence. Results show that, compared with standard GWO, the proposed OBL-GWO reduced active power losses by up to 95.16%, improved total voltage deviation (TVD) by 99.7%, and increased the minimum bus voltage from 0.907 p.u. to 0.994 p.u. In addition, the voltage stability index (VSI) was also enhanced by nearly 30%. The proposed methodology outperformed both standard GWO on the IEEE 33-bus test system and comparable techniques reported in the literature consistently. By accounting for the uncertainty in wind generation, load demand, and future growth, this framework offers a more reliable and practical planning approach that better reflects real operating conditions.

Suggested Citation

  • Abdullah Aljumah & Ahmed Darwish, 2025. "Multi-Objective GWO with Opposition-Based Learning for Optimal Wind Turbine DG Allocation Considering Uncertainty and Seasonal Variability," Sustainability, MDPI, vol. 17(19), pages 1-33, October.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:19:p:8819-:d:1763222
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/19/8819/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/19/8819/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Virginia Casella & Daniel Fernandez Valderrama & Giulio Ferro & Riccardo Minciardi & Massimo Paolucci & Luca Parodi & Michela Robba, 2022. "Towards the Integration of Sustainable Transportation and Smart Grids: A Review on Electric Vehicles’ Management," Energies, MDPI, vol. 15(11), pages 1-23, May.
    2. Nagaraju Dharavat & Suresh Kumar Sudabattula & Suresh Velamuri & Sachin Mishra & Naveen Kumar Sharma & Mohit Bajaj & Elmazeg Elgamli & Mokhtar Shouran & Salah Kamel, 2022. "Optimal Allocation of Renewable Distributed Generators and Electric Vehicles in a Distribution System Using the Political Optimization Algorithm," Energies, MDPI, vol. 15(18), pages 1-25, September.
    3. Sultana, U. & Khairuddin, Azhar B. & Mokhtar, A.S. & Zareen, N. & Sultana, Beenish, 2016. "Grey wolf optimizer based placement and sizing of multiple distributed generation in the distribution system," Energy, Elsevier, vol. 111(C), pages 525-536.
    4. Li, Xueyi & Xiao, Shuquan & Li, Qi & Zhu, Liangkuan & Wang, Tianyang & Chu, Fulei, 2025. "The bearing multi-sensor fault diagnosis method based on a multi-branch parallel perception network and feature fusion strategy," Reliability Engineering and System Safety, Elsevier, vol. 261(C).
    5. Ali Selim & Salah Kamel & Amal A. Mohamed & Ehab E. Elattar, 2021. "Optimal Allocation of Multiple Types of Distributed Generations in Radial Distribution Systems Using a Hybrid Technique," Sustainability, MDPI, vol. 13(12), pages 1-31, June.
    6. Li, Xueyi & Yu, Tianyu & Zhang, Feibin & Huang, Jinfeng & He, David & Chu, Fulei, 2025. "Mixed style network based: A novel rotating machinery fault diagnosis method through batch spectral penalization," Reliability Engineering and System Safety, Elsevier, vol. 255(C).
    7. Ehsan, Ali & Yang, Qiang, 2018. "Optimal integration and planning of renewable distributed generation in the power distribution networks: A review of analytical techniques," Applied Energy, Elsevier, vol. 210(C), pages 44-59.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mahesh Kumar & Amir Mahmood Soomro & Waqar Uddin & Laveet Kumar, 2022. "Optimal Multi-Objective Placement and Sizing of Distributed Generation in Distribution System: A Comprehensive Review," Energies, MDPI, vol. 15(21), pages 1-48, October.
    2. Soheil Younesi & Bahman Ahmadi & Oguzhan Ceylan & Aydogan Ozdemir, 2022. "Optimum Parallel Processing Schemes to Improve the Computation Speed for Renewable Energy Allocation and Sizing Problems," Energies, MDPI, vol. 15(24), pages 1-18, December.
    3. Muhammad Shahroz Sultan & Syed Ali Abbas Kazmi & Abdullah Altamimi & Zafar A. Khan & Dong Ryeol Shin, 2023. "Multi-Objective Optimization-Based Approach for Optimal Allocation of Distributed Generation Considering Techno-Economic and Environmental Indices," Sustainability, MDPI, vol. 15(5), pages 1-30, February.
    4. Muhammad Waqas Khalil & Abdullah Altamimi & Syed Ali Abbas Kazmi & Zafar A. Khan & Dong Ryeol Shin, 2022. "Integration of Distributed Generations in Smart Distribution Networks Using Multi-Criteria Based Sustainable Planning Approach," Sustainability, MDPI, vol. 15(1), pages 1-40, December.
    5. Caixin Yan & Zhifeng Qiu, 2025. "Review of Power Market Optimization Strategies Based on Industrial Load Flexibility," Energies, MDPI, vol. 18(7), pages 1-41, March.
    6. Weifeng Xu & Bing Yu & Qing Song & Liguo Weng & Man Luo & Fan Zhang, 2022. "Economic and Low-Carbon-Oriented Distribution Network Planning Considering the Uncertainties of Photovoltaic Generation and Load Demand to Achieve Their Reliability," Energies, MDPI, vol. 15(24), pages 1-15, December.
    7. Nasreddine Belbachir & Mohamed Zellagui & Samir Settoul & Claude Ziad El-Bayeh & Ragab A. El-Sehiemy, 2023. "Multi Dimension-Based Optimal Allocation of Uncertain Renewable Distributed Generation Outputs with Seasonal Source-Load Power Uncertainties in Electrical Distribution Network Using Marine Predator Al," Energies, MDPI, vol. 16(4), pages 1-24, February.
    8. Shahid Nawaz Khan & Syed Ali Abbas Kazmi & Abdullah Altamimi & Zafar A. Khan & Mohammed A. Alghassab, 2022. "Smart Distribution Mechanisms—Part I: From the Perspectives of Planning," Sustainability, MDPI, vol. 14(23), pages 1-109, December.
    9. Mohseni, Soheil & Brent, Alan C. & Burmester, Daniel, 2020. "A comparison of metaheuristics for the optimal capacity planning of an isolated, battery-less, hydrogen-based micro-grid," Applied Energy, Elsevier, vol. 259(C).
    10. Sultana, U. & Khairuddin, Azhar B. & Sultana, Beenish & Rasheed, Nadia & Qazi, Sajid Hussain & Malik, Nimra Riaz, 2018. "Placement and sizing of multiple distributed generation and battery swapping stations using grasshopper optimizer algorithm," Energy, Elsevier, vol. 165(PA), pages 408-421.
    11. Alya AlHammadi & Nasser Al-Saif & Ameena Saad Al-Sumaiti & Mousa Marzband & Tareefa Alsumaiti & Ehsan Heydarian-Forushani, 2022. "Techno-Economic Analysis of Hybrid Renewable Energy Systems Designed for Electric Vehicle Charging: A Case Study from the United Arab Emirates," Energies, MDPI, vol. 15(18), pages 1-20, September.
    12. Manuel S. Alvarez-Alvarado & Johnny Rengifo & Rommel M. Gallegos-Núñez & José G. Rivera-Mora & Holguer H. Noriega & Washington Velasquez & Daniel L. Donaldson & Carlos D. Rodríguez-Gallegos, 2022. "Particle Swarm Optimization for Optimal Frequency Response with High Penetration of Photovoltaic and Wind Generation," Energies, MDPI, vol. 15(22), pages 1-12, November.
    13. Amro M Elshurafa & Abdel Rahman Muhsen, 2019. "The Upper Limit of Distributed Solar PV Capacity in Riyadh: A GIS-Assisted Study," Sustainability, MDPI, vol. 11(16), pages 1-20, August.
    14. Rahmat Khezri & Amin Mahmoudi & Hirohisa Aki & S. M. Muyeen, 2021. "Optimal Planning of Remote Area Electricity Supply Systems: Comprehensive Review, Recent Developments and Future Scopes," Energies, MDPI, vol. 14(18), pages 1-29, September.
    15. Jerónimo Ramos-Teodoro & Adrián Giménez-Miralles & Francisco Rodríguez & Manuel Berenguel, 2020. "A Flexible Tool for Modeling and Optimal Dispatch of Resources in Agri-Energy Hubs," Sustainability, MDPI, vol. 12(21), pages 1-24, October.
    16. G., Varathan & J., Belwin Edward, 2024. "A review of uncertainty management approaches for active distribution system planning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 205(C).
    17. Deng, Jingchuan & Li, Hongru & Hu, Jinxing & Liu, Zhenyu, 2021. "A new wind speed scenario generation method based on spatiotemporal dependency structure," Renewable Energy, Elsevier, vol. 163(C), pages 1951-1962.
    18. David Lara Leon & Yandi Gallego Landera & Luis Garcia Santander & Lesyani Teresa León Viltre & Oscar Cuaresma Zevallos & Fredy Antonio Muñoz Jarpa, 2025. "Optimal Location of Charging Stations for Electric Vehicles in Distribution Networks: A Literature Review," Energies, MDPI, vol. 18(21), pages 1-23, October.
    19. José Adriano da Costa & David Alves Castelo Branco & Max Chianca Pimentel Filho & Manoel Firmino de Medeiros Júnior & Neilton Fidelis da Silva, 2019. "Optimal Sizing of Photovoltaic Generation in Radial Distribution Systems Using Lagrange Multipliers," Energies, MDPI, vol. 12(9), pages 1-19, May.
    20. Elseify, Mohamed A. & Hashim, Fatma A. & Hussien, Abdelazim G. & Kamel, Salah, 2024. "Single and multi-objectives based on an improved golden jackal optimization algorithm for simultaneous integration of multiple capacitors and multi-type DGs in distribution systems," Applied Energy, Elsevier, vol. 353(PA).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:19:p:8819-:d:1763222. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.