IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i3p624-d1047397.html
   My bibliography  Save this article

Queueing System with Potential for Recruiting Secondary Servers

Author

Listed:
  • Srinivas R. Chakravarthy

    (Department of Industrial and Manufacturing Engineering and Mathematics, Kettering University, Flint, MI 48504, USA)

  • Alexander N. Dudin

    (Department of Applied Mathematics and Computer Science, Belarusian State University, 4, Nezavisimosti Ave., 220030 Minsk, Belarus)

  • Sergey A. Dudin

    (Department of Applied Mathematics and Computer Science, Belarusian State University, 4, Nezavisimosti Ave., 220030 Minsk, Belarus)

  • Olga S. Dudina

    (Department of Applied Mathematics and Computer Science, Belarusian State University, 4, Nezavisimosti Ave., 220030 Minsk, Belarus)

Abstract

In this paper, we consider a single server queueing system in which the arrivals occur according to a Markovian arrival process ( MAP ). The served customers may be recruited (or opted from those customers’ point of view) to act as secondary servers to provide services to the waiting customers. Such customers who are recruited to be servers are referred to as secondary servers. The service times of the main as well as that of the secondary servers are assumed to be exponentially distributed possibly with different parameters. Assuming that at most there can only be one secondary server at any given time and that the secondary server will leave after serving its assigned group of customers, the model is studied as a QBD -type queue. However, one can also study this model as a GI / M /1-type queue. The model is analyzed in steady state, and a few illustrative numerical examples are presented.

Suggested Citation

  • Srinivas R. Chakravarthy & Alexander N. Dudin & Sergey A. Dudin & Olga S. Dudina, 2023. "Queueing System with Potential for Recruiting Secondary Servers," Mathematics, MDPI, vol. 11(3), pages 1-24, January.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:3:p:624-:d:1047397
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/3/624/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/3/624/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chakravarthy, Srinivas R. & Agnihothri, Saligrama R., 2008. "A server backup model with Markovian arrivals and phase type services," European Journal of Operational Research, Elsevier, vol. 184(2), pages 584-609, January.
    2. Chakravarthy, Srinivas R. & Shruti, & Kulshrestha, Rakhee, 2020. "A queueing model with server breakdowns, repairs, vacations, and backup server," Operations Research Perspectives, Elsevier, vol. 7(C).
    3. Srinivas R. Chakravarthy, 2007. "A Multi-Server Queueing Model With Markovian Arrivals And Multiple Thresholds," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 24(02), pages 223-243.
    4. Huamin Zhang & Feng Ding, 2013. "On the Kronecker Products and Their Applications," Journal of Applied Mathematics, Hindawi, vol. 2013, pages 1-8, June.
    5. Dimitri frosinin & L. Breuer, 2006. "Threshold policies for controlled retrial queues with heterogeneous servers," Annals of Operations Research, Springer, vol. 141(1), pages 139-162, January.
    6. V. Rykov & M. Yu. Kitaev, 1995. "Controlled queueing systems," International Journal of Stochastic Analysis, Hindawi, vol. 8, pages 1-3, January.
    7. Isi Mitrani, 2013. "Managing performance and power consumption in a server farm," Annals of Operations Research, Springer, vol. 202(1), pages 121-134, January.
    8. Martin W.P Savelsbergh & Marlin W. Ulmer, 2022. "Challenges and opportunities in crowdsourced delivery planning and operations," 4OR, Springer, vol. 20(1), pages 1-21, March.
    9. Efrosinin, Dmitry & Sztrik, Janos, 2018. "An algorithmic approach to analysing the reliability of a controllable unreliable queue with two heterogeneous servers," European Journal of Operational Research, Elsevier, vol. 271(3), pages 934-952.
    10. Li, Hui & Yang, Tao, 2000. "Queues with a variable number of servers," European Journal of Operational Research, Elsevier, vol. 124(3), pages 615-628, August.
    11. Srinivas R. Chakravarthy & Alexander N. Dudin, 2017. "A queueing model for crowdsourcing," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(3), pages 221-236, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alexander Dudin & Olga Dudina & Sergei Dudin & Konstantin Samouylov, 2021. "Analysis of Multi-Server Queue with Self-Sustained Servers," Mathematics, MDPI, vol. 9(17), pages 1-18, September.
    2. Azizi, Fariba & Salari, Nooshin, 2023. "A novel condition-based maintenance framework for parallel manufacturing systems based on bivariate birth/birth–death processes," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    3. Fang Chen & Xianping Guo & Zhong-Wei Liao, 2022. "Optimal Stopping Time on Semi-Markov Processes with Finite Horizon," Journal of Optimization Theory and Applications, Springer, vol. 194(2), pages 408-439, August.
    4. Marlin W. Ulmer & Alan Erera & Martin Savelsbergh, 2022. "Dynamic service area sizing in urban delivery," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(3), pages 763-793, September.
    5. Arnon Ploymukda & Pattrawut Chansangiam, 2016. "Khatri-Rao Products for Operator Matrices Acting on the Direct Sum of Hilbert Spaces," Journal of Mathematics, Hindawi, vol. 2016, pages 1-7, November.
    6. Vladimir Rykov & Olga Kochueva & Yaroslav Rykov, 2021. "Preventive Maintenance of the k -out-of- n System with Respect to Cost-Type Criterion," Mathematics, MDPI, vol. 9(21), pages 1-15, November.
    7. Yi Zhang, 2018. "On the Nonexplosion and Explosion for Nonhomogeneous Markov Pure Jump Processes," Journal of Theoretical Probability, Springer, vol. 31(3), pages 1322-1355, September.
    8. Irina Kochetkova & Kseniia Leonteva & Ibram Ghebrial & Anastasiya Vlaskina & Sofia Burtseva & Anna Kushchazli & Konstantin Samouylov, 2023. "Controllable Queuing System with Elastic Traffic and Signals for Resource Capacity Planning in 5G Network Slicing," Future Internet, MDPI, vol. 16(1), pages 1-23, December.
    9. Hernan Caceres & Dongchen Yu & Alexander Nikolaev, 2018. "Evaluating shortfall distributions in periodic inventory systems with stochastic endogenous demands and lead-times," Annals of Operations Research, Springer, vol. 271(2), pages 405-427, December.
    10. Dimitri frosinin & L. Breuer, 2006. "Threshold policies for controlled retrial queues with heterogeneous servers," Annals of Operations Research, Springer, vol. 141(1), pages 139-162, January.
    11. Wei, Qingda, 2019. "Nonzero-sum risk-sensitive finite-horizon continuous-time stochastic games," Statistics & Probability Letters, Elsevier, vol. 147(C), pages 96-104.
    12. Dmitry Efrosinin & Natalia Stepanova & Janos Sztrik & Andreas Plank, 2020. "Approximations in Performance Analysis of a Controllable Queueing System with Heterogeneous Servers," Mathematics, MDPI, vol. 8(10), pages 1-18, October.
    13. E. Lerzan Örmeci & Evrim Didem Güneş & Derya Kunduzcu, 2016. "A Modeling Framework for Control of Preventive Services," Manufacturing & Service Operations Management, INFORMS, vol. 18(2), pages 227-244, May.
    14. Alexander Dudin & Sergey Dudin & Rosanna Manzo & Luigi Rarità, 2022. "Analysis of Multi-Server Priority Queueing System with Hysteresis Strategy of Server Reservation and Retrials," Mathematics, MDPI, vol. 10(20), pages 1-19, October.
    15. Chakravarthy, Srinivas R. & Agnihothri, Saligrama R., 2008. "A server backup model with Markovian arrivals and phase type services," European Journal of Operational Research, Elsevier, vol. 184(2), pages 584-609, January.
    16. Ciro D’Apice & Maria Pia D’Arienzo & Alexander Dudin & Rosanna Manzo, 2023. "Optimal Hysteresis Control via a Queuing System with Two Heterogeneous Energy-Consuming Servers," Mathematics, MDPI, vol. 11(21), pages 1-34, November.
    17. Tuan Phung-Duc, 2017. "Exact solutions for M/M/c/Setup queues," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 64(2), pages 309-324, February.
    18. De Angelis, Vanda & Felici, Giovanni & Impelluso, Paolo, 2003. "Integrating simulation and optimisation in health care centre management," European Journal of Operational Research, Elsevier, vol. 150(1), pages 101-114, October.
    19. Daniel Adelman & Angelo J. Mancini, 2016. "Optimality of Quasi-Open-Loop Policies for Discounted Semi-Markov Decision Processes," Mathematics of Operations Research, INFORMS, vol. 41(4), pages 1222-1247, November.
    20. Zehtabian, Shohre & Larsen, Christian & Wøhlk, Sanne, 2022. "Estimation of the arrival time of deliveries by occasional drivers in a crowd-shipping setting," European Journal of Operational Research, Elsevier, vol. 303(2), pages 616-632.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:3:p:624-:d:1047397. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.