IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i3p591-d1044134.html
   My bibliography  Save this article

Existence of Self-Excited and Hidden Attractors in the Modified Autonomous Van Der Pol-Duffing Systems

Author

Listed:
  • A. E. Matouk

    (Department of Mathematics, College of Science Al-Zulfi, Majmaah University, Al-Majmaah 11952, Saudi Arabia
    College of Engineering, Majmaah University, Al-Majmaah 11952, Saudi Arabia)

  • T. N. Abdelhameed

    (Department of Mathematics, College of Science Al-Zulfi, Majmaah University, Al-Majmaah 11952, Saudi Arabia
    College of Engineering, Majmaah University, Al-Majmaah 11952, Saudi Arabia
    Mathematics Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt)

  • D. K. Almutairi

    (College of Engineering, Majmaah University, Al-Majmaah 11952, Saudi Arabia)

  • M. A. Abdelkawy

    (Mathematics Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt
    Department of Mathematics and Statistics, Faculty of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11564, Saudi Arabia)

  • M. A. E. Herzallah

    (Faculty of Science, Zagazig University, Zagazig 44519, Egypt
    Faculty of Science and Humanities, Shaqra University, Al-Dawadmi 11911, Saudi Arabia)

Abstract

This study investigates the multistability phenomenon and coexisting attractors in the modified Autonomous Van der Pol-Duffing (MAVPD) system and its fractional-order form. The analytical conditions for existence of periodic solutions in the integer-order system via Hopf bifurcation are discussed. In addition, conditions for approximating the solutions of the fractional version to periodic solutions are obtained via the Hopf bifurcation theory in fractional-order systems. Moreover, the technique for hidden attractors localization in the integer-order MAVPD is provided. Therefore, motivated by the previous discussion, the appearances of self-excited and hidden attractors are explained in the integer- and fractional-order MAVPD systems. Phase transition of quasi-periodic hidden attractors between the integer- and fractional-order MAVPD systems is observed. Throughout this study, the existence of complex dynamics is also justified using some effective numerical measures such as Lyapunov exponents, bifurcation diagrams and basin sets of attraction.

Suggested Citation

  • A. E. Matouk & T. N. Abdelhameed & D. K. Almutairi & M. A. Abdelkawy & M. A. E. Herzallah, 2023. "Existence of Self-Excited and Hidden Attractors in the Modified Autonomous Van Der Pol-Duffing Systems," Mathematics, MDPI, vol. 11(3), pages 1-13, January.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:3:p:591-:d:1044134
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/3/591/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/3/591/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Manuel Henriques & Duarte Valério & Paulo Gordo & Rui Melicio, 2021. "Fractional-Order Colour Image Processing," Mathematics, MDPI, vol. 9(5), pages 1-15, February.
    2. Laskin, Nick, 2000. "Fractional market dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 287(3), pages 482-492.
    3. Kumar, Sunil & Kumar, Ranbir & Cattani, Carlo & Samet, Bessem, 2020. "Chaotic behaviour of fractional predator-prey dynamical system," Chaos, Solitons & Fractals, Elsevier, vol. 135(C).
    4. A. Othman Almatroud & A. E. Matouk & Wael W. Mohammed & Naveed Iqbal & Saleh Alshammari & Rigoberto Medina, 2022. "Self-Excited and Hidden Chaotic Attractors in Matouk’s Hyperchaotic Systems," Discrete Dynamics in Nature and Society, Hindawi, vol. 2022, pages 1-14, March.
    5. Ajay Kumar & Sara Salem Alzaid & Badr Saad T. Alkahtani & Sunil Kumar, 2022. "Complex Dynamic Behaviour of Food Web Model with Generalized Fractional Operator," Mathematics, MDPI, vol. 10(10), pages 1-23, May.
    6. Denis de Carvalho Braga & Luis Fernando Mello & Marcelo Messias, 2009. "Bifurcation Analysis of a Van der Pol-Duffing Circuit with Parallel Resistor," Mathematical Problems in Engineering, Hindawi, vol. 2009, pages 1-26, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zuolei Wang & Lizhou Zhuang & Jianjiang Yu & Haibo Jiang & Wanjiang Xu & Xuerong Shi, 2023. "Hidden Dynamics of a New Jerk-like System with a Smooth Memristor and Applications in Image Encryption," Mathematics, MDPI, vol. 11(22), pages 1-18, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peng, Qiu & Jian, Jigui, 2023. "Synchronization analysis of fractional-order inertial-type neural networks with time delays," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 205(C), pages 62-77.
    2. Yi Chen & Jing Dong & Hao Ni, 2021. "ɛ-Strong Simulation of Fractional Brownian Motion and Related Stochastic Differential Equations," Mathematics of Operations Research, INFORMS, vol. 46(2), pages 559-594, May.
    3. Ge, Zheng-Ming & Yi, Chang-Xian, 2007. "Chaos in a nonlinear damped Mathieu system, in a nano resonator system and in its fractional order systems," Chaos, Solitons & Fractals, Elsevier, vol. 32(1), pages 42-61.
    4. Pratap, A. & Raja, R. & Cao, J. & Lim, C.P. & Bagdasar, O., 2019. "Stability and pinning synchronization analysis of fractional order delayed Cohen–Grossberg neural networks with discontinuous activations," Applied Mathematics and Computation, Elsevier, vol. 359(C), pages 241-260.
    5. Tam, Lap Mou & Si Tou, Wai Meng, 2008. "Parametric study of the fractional-order Chen–Lee system," Chaos, Solitons & Fractals, Elsevier, vol. 37(3), pages 817-826.
    6. Wang, Fei & Yang, Yongqing & Hu, Manfeng & Xu, Xianyun, 2015. "Projective cluster synchronization of fractional-order coupled-delay complex network via adaptive pinning control," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 434(C), pages 134-143.
    7. Alquran, Marwan & Yousef, Feras & Alquran, Farah & Sulaiman, Tukur A. & Yusuf, Abdullahi, 2021. "Dual-wave solutions for the quadratic–cubic conformable-Caputo time-fractional Klein–Fock–Gordon equation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 185(C), pages 62-76.
    8. G. Fern'andez-Anaya & L. A. Quezada-T'ellez & B. Nu~nez-Zavala & D. Brun-Battistini, 2019. "Katugampola Generalized Conformal Derivative Approach to Inada Conditions and Solow-Swan Economic Growth Model," Papers 1907.00130, arXiv.org.
    9. Ariza-Hernandez, Francisco J. & Martin-Alvarez, Luis M. & Arciga-Alejandre, Martin P. & Sanchez-Ortiz, Jorge, 2021. "Bayesian inversion for a fractional Lotka-Volterra model: An application of Canadian lynx vs. snowshoe hares," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    10. Lu, Jun Guo & Chen, Guanrong, 2006. "A note on the fractional-order Chen system," Chaos, Solitons & Fractals, Elsevier, vol. 27(3), pages 685-688.
    11. Ravi Kanth, A.S.V. & Devi, Sangeeta, 2021. "A practical numerical approach to solve a fractional Lotka–Volterra population model with non-singular and singular kernels," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    12. Sheu, Long-Jye & Chen, Hsien-Keng & Chen, Juhn-Horng & Tam, Lap-Mou & Chen, Wen-Chin & Lin, Kuang-Tai & Kang, Yuan, 2008. "Chaos in the Newton–Leipnik system with fractional order," Chaos, Solitons & Fractals, Elsevier, vol. 36(1), pages 98-103.
    13. Laskin, Nick, 2018. "Valuing options in shot noise market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 502(C), pages 518-533.
    14. Ali Balcı, Mehmet, 2017. "Time fractional capital-induced labor migration model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 477(C), pages 91-98.
    15. Trinidad Segovia, J.E. & Fernández-Martínez, M. & Sánchez-Granero, M.A., 2012. "A note on geometric method-based procedures to calculate the Hurst exponent," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(6), pages 2209-2214.
    16. Majee, Suvankar & Jana, Soovoojeet & Das, Dhiraj Kumar & Kar, T.K., 2022. "Global dynamics of a fractional-order HFMD model incorporating optimal treatment and stochastic stability," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    17. Attia, Nourhane & Akgül, Ali & Seba, Djamila & Nour, Abdelkader, 2020. "An efficient numerical technique for a biological population model of fractional order," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    18. Chen, Wei-Ching, 2008. "Nonlinear dynamics and chaos in a fractional-order financial system," Chaos, Solitons & Fractals, Elsevier, vol. 36(5), pages 1305-1314.
    19. Valentina V. Tarasova & Vasily E. Tarasov, 2016. "Fractional Dynamics of Natural Growth and Memory Effect in Economics," Papers 1612.09060, arXiv.org, revised Jan 2017.
    20. Wang, Fei & Yang, Yongqing, 2018. "Intermittent synchronization of fractional order coupled nonlinear systems based on a new differential inequality," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 142-152.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:3:p:591-:d:1044134. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.