IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i2p311-d1028030.html
   My bibliography  Save this article

The Vehicle Routing Problem with Simultaneous Pickup and Delivery Considering the Total Number of Collected Goods

Author

Listed:
  • Qinge Guo

    (School of Management, Xi’an Jiaotong University, Xi’an 710049, China
    School of Economics and Management, Xi’an Technological University, Xi’an 710021, China)

  • Nengmin Wang

    (School of Management, Xi’an Jiaotong University, Xi’an 710049, China)

Abstract

As a consequence of e-commerce development, large quantities of returned goods are shipped every day. The vehicle routing problem with simultaneous delivery and pickup (VRPSDP) has become one of the most important areas of logistics management. Most related studies are aimed at minimizing travel time. However, the total number of collected goods is also very important to logistics companies. Thus, only considering the traveling time cannot reflect actual practice. To effectively optimize these operations for logistics companies, this paper introduces the vehicle routing problem with simultaneous pickup and delivery considering the total number of collected goods. Based on the principles of considering the number of collected goods, a bi-objective vehicle routing model minimizing the total travel time and maximizing the total number of collected goods simultaneously is developed. A polynomial time approximation algorithm based on the ε -constraint method is designed to address this problem, and the approximation ratio of the algorithm is analyzed. Finally, the validity and feasibility of the proposed model and algorithm are verified by test examples, and several managerial insights are derived from the sensitivity analysis.

Suggested Citation

  • Qinge Guo & Nengmin Wang, 2023. "The Vehicle Routing Problem with Simultaneous Pickup and Delivery Considering the Total Number of Collected Goods," Mathematics, MDPI, vol. 11(2), pages 1-10, January.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:2:p:311-:d:1028030
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/2/311/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/2/311/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bérubé, Jean-François & Gendreau, Michel & Potvin, Jean-Yves, 2009. "An exact [epsilon]-constraint method for bi-objective combinatorial optimization problems: Application to the Traveling Salesman Problem with Profits," European Journal of Operational Research, Elsevier, vol. 194(1), pages 39-50, April.
    2. Zhu, Lin & Sheu, Jiuh-Biing, 2018. "Failure-specific cooperative recourse strategy for simultaneous pickup and delivery problem with stochastic demands," European Journal of Operational Research, Elsevier, vol. 271(3), pages 896-912.
    3. Minis, I. & Tatarakis, A., 2011. "Stochastic single vehicle routing problem with delivery and pick up and a predefined customer sequence," European Journal of Operational Research, Elsevier, vol. 213(1), pages 37-51, August.
    4. Mauro Dell’Amico & Giovanni Righini & Matteo Salani, 2006. "A Branch-and-Price Approach to the Vehicle Routing Problem with Simultaneous Distribution and Collection," Transportation Science, INFORMS, vol. 40(2), pages 235-247, May.
    5. Li, Chongshou & Gong, Lijun & Luo, Zhixing & Lim, Andrew, 2019. "A branch-and-price-and-cut algorithm for a pickup and delivery problem in retailing," Omega, Elsevier, vol. 89(C), pages 71-91.
    6. Emmanouil E. Zachariadis & Christos D. Tarantilis & Chris T. Kiranoudis, 2017. "Vehicle routing strategies for pick-up and delivery service under two dimensional loading constraints," Operational Research, Springer, vol. 17(1), pages 115-143, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yinggui Zhang & Lining Sheng, 2023. "Optimization of Simultaneous Pickup and Delivery Vehicle Routing with Three-Dimensional Balanced Loading Constraints," Sustainability, MDPI, vol. 15(11), pages 1-20, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Neves-Moreira, Fábio & Almada-Lobo, Bernardo & Guimarães, Luís & Amorim, Pedro, 2022. "The multi-product inventory-routing problem with pickups and deliveries: Mitigating fluctuating demand via rolling horizon heuristics," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    2. Zhu, Lin & Sheu, Jiuh-Biing, 2018. "Failure-specific cooperative recourse strategy for simultaneous pickup and delivery problem with stochastic demands," European Journal of Operational Research, Elsevier, vol. 271(3), pages 896-912.
    3. Zhou, Jian & Li, Hui & Gu, Yujie & Zhao, Mingxuan & Xie, Xuehui & Zheng, Haoran & Fang, Xinghua, 2021. "A novel two-phase approach for the bi-objective simultaneous delivery and pickup problem with fuzzy pickup demands," International Journal of Production Economics, Elsevier, vol. 234(C).
    4. Dang, Duc-Cuong & Guibadj, Rym Nesrine & Moukrim, Aziz, 2013. "An effective PSO-inspired algorithm for the team orienteering problem," European Journal of Operational Research, Elsevier, vol. 229(2), pages 332-344.
    5. Gutiérrez-Jarpa, Gabriel & Desaulniers, Guy & Laporte, Gilbert & Marianov, Vladimir, 2010. "A branch-and-price algorithm for the Vehicle Routing Problem with Deliveries, Selective Pickups and Time Windows," European Journal of Operational Research, Elsevier, vol. 206(2), pages 341-349, October.
    6. Tang, Lianhua & Li, Yantong & Bai, Danyu & Liu, Tao & Coelho, Leandro C., 2022. "Bi-objective optimization for a multi-period COVID-19 vaccination planning problem," Omega, Elsevier, vol. 110(C).
    7. Pandelis, D.G. & Karamatsoukis, C.C. & Kyriakidis, E.G., 2013. "Finite and infinite-horizon single vehicle routing problems with a predefined customer sequence and pickup and delivery," European Journal of Operational Research, Elsevier, vol. 231(3), pages 577-586.
    8. Santini, Alberto & Plum, Christian E.M. & Ropke, Stefan, 2018. "A branch-and-price approach to the feeder network design problem," European Journal of Operational Research, Elsevier, vol. 264(2), pages 607-622.
    9. Zhang, Xiangyi & Chen, Lu & Gendreau, Michel & Langevin, André, 2022. "A branch-and-cut algorithm for the vehicle routing problem with two-dimensional loading constraints," European Journal of Operational Research, Elsevier, vol. 302(1), pages 259-269.
    10. Nicolas Jozefowiez & Gilbert Laporte & Frédéric Semet, 2012. "A Generic Branch-and-Cut Algorithm for Multiobjective Optimization Problems: Application to the Multilabel Traveling Salesman Problem," INFORMS Journal on Computing, INFORMS, vol. 24(4), pages 554-564, November.
    11. Diclehan Tezcaner & Murat Köksalan, 2011. "An Interactive Algorithm for Multi-objective Route Planning," Journal of Optimization Theory and Applications, Springer, vol. 150(2), pages 379-394, August.
    12. Junkai He & Feng Chu & Feifeng Zheng & Ming Liu, 2021. "A green-oriented bi-objective disassembly line balancing problem with stochastic task processing times," Annals of Operations Research, Springer, vol. 296(1), pages 71-93, January.
    13. Li, Jiliu & Qin, Hu & Baldacci, Roberto & Zhu, Wenbin, 2020. "Branch-and-price-and-cut for the synchronized vehicle routing problem with split delivery, proportional service time and multiple time windows," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 140(C).
    14. Luciano Costa & Claudio Contardo & Guy Desaulniers, 2019. "Exact Branch-Price-and-Cut Algorithms for Vehicle Routing," Transportation Science, INFORMS, vol. 53(4), pages 946-985, July.
    15. Chao Chen & Shenle Pan & Zhu Wang & Ray Y. Zhong, 2017. "Using taxis to collect citywide E-commerce reverse flows: a crowdsourcing solution," International Journal of Production Research, Taylor & Francis Journals, vol. 55(7), pages 1833-1844, April.
    16. RuiYang Li & Ming He & HongYue He & QiaoYu Deng, 2022. "Heuristic column generation for designing an express circular packaging distribution network," Operational Research, Springer, vol. 22(2), pages 1103-1126, April.
    17. Xuecheng Tian & Yanxia Guan & Shuaian Wang, 2023. "Data Transformation in the Predict-Then-Optimize Framework: Enhancing Decision Making under Uncertainty," Mathematics, MDPI, vol. 11(17), pages 1-12, September.
    18. Maria João Santos & Pedro Amorim & Alexandra Marques & Ana Carvalho & Ana Póvoa, 2020. "The vehicle routing problem with backhauls towards a sustainability perspective: a review," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(2), pages 358-401, July.
    19. Thyago Celso C. Nepomuceno & Ana Paula Cabral Seixas Costa, 2019. "Spatial visualization on patterns of disaggregate robberies," Operational Research, Springer, vol. 19(4), pages 857-886, December.
    20. Yu, Bin & Shan, Wenxuan & Sheu, Jiuh-Biing & Diabat, Ali, 2022. "Branch-and-price for a combined order selection and distribution problem in online community group-buying of perishable products," Transportation Research Part B: Methodological, Elsevier, vol. 158(C), pages 341-373.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:2:p:311-:d:1028030. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.