IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i23p4728-d1285392.html
   My bibliography  Save this article

Research on the Attack Strategy of Multifunctional Market Trading Oriented to Price

Author

Listed:
  • Jiaqi Tian

    (Department of Information Science and Engineering, Northeastern University, Shenyang 110819, China)

  • Bonan Huang

    (Department of Information Science and Engineering, Northeastern University, Shenyang 110819, China)

  • Zewen Shi

    (Zhangjiakou Power Supply Company of Jibei Electric Power Company Limited, Zhangjiakou 075000, China)

  • Lu Liu

    (Navigation College, Dalian Maritime University, Dalian 116026, China)

  • Lihong Feng

    (Department of Information Science and Engineering, Northeastern University, Shenyang 110819, China)

  • Guoxiu Jing

    (Department of Information Science and Engineering, Northeastern University, Shenyang 110819, China)

Abstract

In the context of energy transformation and power market system reform, it is crucial to address the network risks associated with enhancing the integration of the “Energy–Information–Market” paradigm. This necessitates research on multi-energy market trading modes and the corresponding offensive and defensive technologies. This paper proposes a novel approach centered around a node-local Energy Hub (EH) that represents large industrial users with diverse energy demands. To facilitate multi-energy two-way trading, a price-oriented Transactive Energy (TE) market clearing strategy is developed. Building upon this transaction network framework, a data-driven attack strategy targeting the state estimator of the Transmission System Operator (TSO) is introduced and implemented in two stages, encompassing real-time topology estimation and False Data Injection attacks. By leveraging Matrix Transfer Entropy (MTE), the optimal attack target is identified to disrupt the economic stability of the system and the profit of the attacker increases significantly. The proposed attack strategy is validated through simulations conducted on a 30-node system, yielding conclusive evidence of its effectiveness while offering vital insights for system defense.

Suggested Citation

  • Jiaqi Tian & Bonan Huang & Zewen Shi & Lu Liu & Lihong Feng & Guoxiu Jing, 2023. "Research on the Attack Strategy of Multifunctional Market Trading Oriented to Price," Mathematics, MDPI, vol. 11(23), pages 1-22, November.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:23:p:4728-:d:1285392
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/23/4728/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/23/4728/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chen, Yue & Wei, Wei & Liu, Feng & Wu, Qiuwei & Mei, Shengwei, 2018. "Analyzing and validating the economic efficiency of managing a cluster of energy hubs in multi-carrier energy systems," Applied Energy, Elsevier, vol. 230(C), pages 403-416.
    2. Kamyab, Farhad & Bahrami, Shahab, 2016. "Efficient operation of energy hubs in time-of-use and dynamic pricing electricity markets," Energy, Elsevier, vol. 106(C), pages 343-355.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lu, Xinhui & Liu, Zhaoxi & Ma, Li & Wang, Lingfeng & Zhou, Kaile & Yang, Shanlin, 2020. "A robust optimization approach for coordinated operation of multiple energy hubs," Energy, Elsevier, vol. 197(C).
    2. Jordehi, A. Rezaee, 2019. "Optimisation of demand response in electric power systems, a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 308-319.
    3. Wang, Yongli & Wang, Yudong & Huang, Yujing & Yang, Jiale & Ma, Yuze & Yu, Haiyang & Zeng, Ming & Zhang, Fuwei & Zhang, Yanfu, 2019. "Operation optimization of regional integrated energy system based on the modeling of electricity-thermal-natural gas network," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    4. Liu, Qian & Li, Wanjun & Zhao, Zhen & Jian, Gan, 2024. "Optimal operation of coordinated multi-carrier energy hubs for integrated electricity and gas networks," Energy, Elsevier, vol. 288(C).
    5. Yanyue Wang & Guohua Fang & Zhenni Wang, 2022. "The Benefit Realization Mechanism of Pumped Storage Power Plants Based on Multi-Dimensional Regulation and Leader-Follower Decision-Making," Energies, MDPI, vol. 15(16), pages 1-15, August.
    6. Hassan Ranjbarzadeh & Seyed Masoud Moghaddas Tafreshi & Mohd Hasan Ali & Abbas Z. Kouzani & Suiyang Khoo, 2022. "A Probabilistic Model for Minimization of Solar Energy Operation Costs as Well as CO 2 Emissions in a Multi-Carrier Microgrid (MCMG)," Energies, MDPI, vol. 15(9), pages 1-24, April.
    7. Chen, Yang & Park, Byungkwon & Kou, Xiao & Hu, Mengqi & Dong, Jin & Li, Fangxing & Amasyali, Kadir & Olama, Mohammed, 2020. "A comparison study on trading behavior and profit distribution in local energy transaction games," Applied Energy, Elsevier, vol. 280(C).
    8. Mohammad Hemmati & Mehdi Abapour & Behnam Mohammadi-Ivatloo & Amjad Anvari-Moghaddam, 2020. "Optimal Operation of Integrated Electrical and Natural Gas Networks with a Focus on Distributed Energy Hub Systems," Sustainability, MDPI, vol. 12(20), pages 1-22, October.
    9. Tengfei Ma & Junyong Wu & Liangliang Hao & Huaguang Yan & Dezhi Li, 2018. "A Real-Time Pricing Scheme for Energy Management in Integrated Energy Systems: A Stackelberg Game Approach," Energies, MDPI, vol. 11(10), pages 1-19, October.
    10. Maria Chiara D'errico, 2020. "Demand Elasticity in the Italian Power Market: a Bayesian Experiment under dual pricing scheme," Review of Economics and Institutions, Università di Perugia, vol. 11(1-2).
    11. Shams, Mohammad H. & Shahabi, Majid & Khodayar, Mohammad E., 2018. "Stochastic day-ahead scheduling of multiple energy Carrier microgrids with demand response," Energy, Elsevier, vol. 155(C), pages 326-338.
    12. Yizhi Cheng & Peichao Zhang & Xuezhi Liu, 2019. "Collaborative Autonomous Optimization of Interconnected Multi-Energy Systems with Two-Stage Transactive Control Framework," Energies, MDPI, vol. 13(1), pages 1-21, December.
    13. Gan, Wei & Yan, Mingyu & Yao, Wei & Wen, Jinyu, 2021. "Peer to peer transactive energy for multiple energy hub with the penetration of high-level renewable energy," Applied Energy, Elsevier, vol. 295(C).
    14. Salehimaleh, Mohammad & Akbarimajd, Adel & Valipour, Khalil & Dejamkhooy, Abdolmajid, 2018. "Generalized modeling and optimal management of energy hub based electricity, heat and cooling demands," Energy, Elsevier, vol. 159(C), pages 669-685.
    15. Yang, Youlong & Che, Jinxing & Deng, Chengzhi & Li, Li, 2019. "Sequential grid approach based support vector regression for short-term electric load forecasting," Applied Energy, Elsevier, vol. 238(C), pages 1010-1021.
    16. Jiajia Li & Jinfu Liu & Peigang Yan & Xingshuo Li & Guowen Zhou & Daren Yu, 2021. "Operation Optimization of Integrated Energy System under a Renewable Energy Dominated Future Scene Considering Both Independence and Benefit: A Review," Energies, MDPI, vol. 14(4), pages 1-36, February.
    17. Lasemi, Mohammad Ali & Arabkoohsar, Ahmad & Hajizadeh, Amin & Mohammadi-ivatloo, Behnam, 2022. "A comprehensive review on optimization challenges of smart energy hubs under uncertainty factors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    18. Shan Deng & Qinghua Wu & Zhaoxia Jing & Lilan Wu & Feng Wei & Xiaoxin Zhou, 2017. "Optimal Capacity Configuration for Energy Hubs Considering Part-Load Characteristics of Generation Units," Energies, MDPI, vol. 10(12), pages 1-19, November.
    19. Nikmehr, Nima, 2020. "Distributed robust operational optimization of networked microgrids embedded interconnected energy hubs," Energy, Elsevier, vol. 199(C).
    20. Wang, Zheng-Xin & Li, Qin & Pei, Ling-Ling, 2018. "A seasonal GM(1,1) model for forecasting the electricity consumption of the primary economic sectors," Energy, Elsevier, vol. 154(C), pages 522-534.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:23:p:4728-:d:1285392. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.