IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i15p3323-d1205398.html
   My bibliography  Save this article

NISQ-Ready Community Detection Based on Separation-Node Identification

Author

Listed:
  • Jonas Stein

    (Mobile and Distributed Systems Group, LMU Munich, 80538 Munich, Germany)

  • Dominik Ott

    (Mobile and Distributed Systems Group, LMU Munich, 80538 Munich, Germany)

  • Jonas Nüßlein

    (Mobile and Distributed Systems Group, LMU Munich, 80538 Munich, Germany)

  • David Bucher

    (Aqarios GmbH, 80538 Munich, Germany)

  • Mirco Schönfeld

    (Data Modelling & Interdisciplinary Knowledge Generation, University of Bayreuth, 95445 Bayreuth, Germany)

  • Sebastian Feld

    (Quantum Machine Learning, Delft University of Technology, 2628 CD Delft, The Netherlands)

Abstract

The analysis of network structure is essential to many scientific areas ranging from biology to sociology. As the computational task of clustering these networks into partitions, i.e., solving the community detection problem, is generally NP-hard, heuristic solutions are indispensable. The exploration of expedient heuristics has led to the development of particularly promising approaches in the emerging technology of quantum computing. Motivated by the substantial hardware demands for all established quantum community detection approaches, we introduce a novel QUBO-based approach that only needs number-of-nodes qubits and is represented by a QUBO matrix as sparse as the input graph’s adjacency matrix. The substantial improvement in the sparsity of the QUBO matrix, which is typically very dense in related work, is achieved through the novel concept of separation nodes. Instead of assigning every node to a community directly, this approach relies on the identification of a separation-node set , which, upon its removal from the graph, yields a set of connected components, representing the core components of the communities. Employing a greedy heuristic to assign the nodes from the separation-node sets to the identified community cores, subsequent experimental results yield a proof of concept by achieving an up to 95% optimal solution quality on three established real-world benchmark datasets. This work hence displays a promising approach to NISQ-ready quantum community detection, catalyzing the application of quantum computers for the network structure analysis of large-scale, real-world problem instances.

Suggested Citation

  • Jonas Stein & Dominik Ott & Jonas Nüßlein & David Bucher & Mirco Schönfeld & Sebastian Feld, 2023. "NISQ-Ready Community Detection Based on Separation-Node Identification," Mathematics, MDPI, vol. 11(15), pages 1-19, July.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:15:p:3323-:d:1205398
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/15/3323/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/15/3323/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Frank Arute & Kunal Arya & Ryan Babbush & Dave Bacon & Joseph C. Bardin & Rami Barends & Rupak Biswas & Sergio Boixo & Fernando G. S. L. Brandao & David A. Buell & Brian Burkett & Yu Chen & Zijun Chen, 2019. "Quantum supremacy using a programmable superconducting processor," Nature, Nature, vol. 574(7779), pages 505-510, October.
    2. Gergely Palla & Imre Derényi & Illés Farkas & Tamás Vicsek, 2005. "Uncovering the overlapping community structure of complex networks in nature and society," Nature, Nature, vol. 435(7043), pages 814-818, June.
    3. Christian F A Negre & Hayato Ushijima-Mwesigwa & Susan M Mniszewski, 2020. "Detecting multiple communities using quantum annealing on the D-Wave system," PLOS ONE, Public Library of Science, vol. 15(2), pages 1-14, February.
    4. Robert Thorndike, 1953. "Who belongs in the family?," Psychometrika, Springer;The Psychometric Society, vol. 18(4), pages 267-276, December.
    5. A. Mashaghi & A. Ramezanpour & V. Karimipour, 2004. "Investigation of a protein complex network," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 41(1), pages 113-121, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sultan H Almotiri, 2024. "Quantum-resilient software security: A fuzzy AHP-based assessment framework in the era of quantum computing," PLOS ONE, Public Library of Science, vol. 19(12), pages 1-25, December.
    2. Becken, Susanne & Stantic, Bela & Chen, Jinyan & Connolly, Rod M., 2022. "Twitter conversations reveal issue salience of aviation in the broader context of climate change," Journal of Air Transport Management, Elsevier, vol. 98(C).
    3. Orietta Nicolis & Jean Paul Maidana & Fabian Contreras & Danilo Leal, 2024. "Analyzing the Impact of COVID-19 on Economic Sustainability: A Clustering Approach," Sustainability, MDPI, vol. 16(4), pages 1-30, February.
    4. Jorge Peña & Yannick Rochat, 2012. "Bipartite Graphs as Models of Population Structures in Evolutionary Multiplayer Games," PLOS ONE, Public Library of Science, vol. 7(9), pages 1-13, September.
    5. Sofia Priazhkina & Samuel Palmer & Pablo Martín-Ramiro & Román Orús & Samuel Mugel & Vladimir Skavysh, 2024. "Digital Payments in Firm Networks: Theory of Adoption and Quantum Algorithm," Staff Working Papers 24-17, Bank of Canada.
    6. Shang, Jiaxing & Liu, Lianchen & Li, Xin & Xie, Feng & Wu, Cheng, 2016. "Targeted revision: A learning-based approach for incremental community detection in dynamic networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 443(C), pages 70-85.
    7. Hu, Jie-Ru & Zhang, Zuo-Yuan & Liu, Jin-Ming, 2024. "Implementation of three-qubit Deutsch-Jozsa algorithm with pendular states of polar molecules by optimal control," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 635(C).
    8. repec:plo:pone00:0112606 is not listed on IDEAS
    9. Archana R. Panhalkar & Dharmpal D. Doye, 2020. "An approach of improving decision tree classifier using condensed informative data," DECISION: Official Journal of the Indian Institute of Management Calcutta, Springer;Indian Institute of Management Calcutta, vol. 47(4), pages 431-445, December.
    10. Ying Song & Zhiwen Zheng & Yunmei Shi & Bo Wang, 2023. "GLOD: The Local Greedy Expansion Method for Overlapping Community Detection in Dynamic Provenance Networks," Mathematics, MDPI, vol. 11(15), pages 1-16, July.
    11. Michele Cincera, 2005. "Firms' productivity growth and R&D spillovers: An analysis of alternative technological proximity measures," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 14(8), pages 657-682.
    12. Korneliusz Pylak & Piotr Oleszczuk & Przemysław Kowalik, 2021. "Typology of Smart Specializations Across European Regions," European Research Studies Journal, European Research Studies Journal, vol. 0(Special 1), pages 503-512.
    13. Maryam Moghimi & Herbert W. Corley, 2020. "Information Loss Due to the Data Reduction of Sample Data from Discrete Distributions," Data, MDPI, vol. 5(3), pages 1-18, September.
    14. Horstmann, Felix, 2017. "Measuring the shopper's attitude toward the point of sale display: Scale development and validation," Journal of Retailing and Consumer Services, Elsevier, vol. 36(C), pages 112-123.
    15. Zhang, Zhiwei & Wang, Zhenyu, 2015. "Mining overlapping and hierarchical communities in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 421(C), pages 25-33.
    16. Martin Ringbauer & Marcel Hinsche & Thomas Feldker & Paul K. Faehrmann & Juani Bermejo-Vega & Claire L. Edmunds & Lukas Postler & Roman Stricker & Christian D. Marciniak & Michael Meth & Ivan Pogorelo, 2025. "Verifiable measurement-based quantum random sampling with trapped ions," Nature Communications, Nature, vol. 16(1), pages 1-9, December.
    17. Masa Tsuchiya & Vincent Piras & Alessandro Giuliani & Masaru Tomita & Kumar Selvarajoo, 2010. "Collective Dynamics of Specific Gene Ensembles Crucial for Neutrophil Differentiation: The Existence of Genome Vehicles Revealed," PLOS ONE, Public Library of Science, vol. 5(8), pages 1-10, August.
    18. Zhao, Zhili & Zhang, Nana & Xie, Jiquan & Hu, Ahui & Liu, Xupeng & Yan, Ruiyi & Wan, Li & Sun, Yue, 2024. "Detecting network communities based on central node selection and expansion," Chaos, Solitons & Fractals, Elsevier, vol. 188(C).
    19. Junyong Jang & Yongbin Cho & Juntae Park, 2024. "Bus Route Sketching: A Multimetric Analysis from the User’s and Operator’s Perspectives," Sustainability, MDPI, vol. 16(16), pages 1-19, August.
    20. Yulong Dong & Jonathan A. Gross & Murphy Yuezhen Niu, 2025. "Optimal low-depth quantum signal-processing phase estimation," Nature Communications, Nature, vol. 16(1), pages 1-9, December.
    21. Wu, Zhihao & Lin, Youfang & Wan, Huaiyu & Tian, Shengfeng & Hu, Keyun, 2012. "Efficient overlapping community detection in huge real-world networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(7), pages 2475-2490.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:15:p:3323-:d:1205398. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.