IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i8p1275-d792063.html
   My bibliography  Save this article

Common Attractive Point Results for Two Generalized Nonexpansive Mappings in Uniformly Convex Banach Spaces

Author

Listed:
  • Chadarat Thongphaen

    (Master’s Degree Program in Mathematics, Department of Mathematics, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand)

  • Warunun Inthakon

    (Research Group in Mathematics and Applied Mathematics, Department of Mathematics, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
    Data Science Research Center, Department of Mathematics, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand)

  • Suthep Suantai

    (Research Group in Mathematics and Applied Mathematics, Department of Mathematics, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
    Data Science Research Center, Department of Mathematics, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand)

  • Narawadee Phudolsitthiphat

    (Research Group in Mathematics and Applied Mathematics, Department of Mathematics, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
    Data Science Research Center, Department of Mathematics, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand)

Abstract

In this work, we study some basic properties of the set of common attractive points and prove strong convergence results for common attractive points of two generalized nonexpansive mappings in a uniformly convex Banach space. As a consequence, we obtain a common fixed point result of such mappings and apply it to solving the convex minimization problem. Finally, numerical experiments are given to support our results.

Suggested Citation

  • Chadarat Thongphaen & Warunun Inthakon & Suthep Suantai & Narawadee Phudolsitthiphat, 2022. "Common Attractive Point Results for Two Generalized Nonexpansive Mappings in Uniformly Convex Banach Spaces," Mathematics, MDPI, vol. 10(8), pages 1-18, April.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:8:p:1275-:d:792063
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/8/1275/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/8/1275/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dawan Chumpungam & Panitarn Sarnmeta & Suthep Suantai, 2021. "A New Forward–Backward Algorithm with Line Searchand Inertial Techniques for Convex Minimization Problems with Applications," Mathematics, MDPI, vol. 9(13), pages 1-20, July.
    2. Panadda Thongpaen & Attapol Kaewkhao & Narawadee Phudolsitthiphat & Suthep Suantai & Warunun Inthakon, 2021. "Weak and Strong Convergence Theorems for Common Attractive Points of Widely More Generalized Hybrid Mappings in Hilbert Spaces," Mathematics, MDPI, vol. 9(19), pages 1-12, October.
    3. Patrick L. Combettes & Jean-Christophe Pesquet, 2011. "Proximal Splitting Methods in Signal Processing," Springer Optimization and Its Applications, in: Heinz H. Bauschke & Regina S. Burachik & Patrick L. Combettes & Veit Elser & D. Russell Luke & Henry (ed.), Fixed-Point Algorithms for Inverse Problems in Science and Engineering, chapter 0, pages 185-212, Springer.
    4. Entisarat El-Shobaky & Sahar Mohammed Ali & Wataru Takahashi, 2001. "On projection constant problems and the existence of metric projections in normed spaces," Abstract and Applied Analysis, Hindawi, vol. 6, pages 1-11, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guillaume Sagnol & Edouard Pauwels, 2019. "An unexpected connection between Bayes A-optimal designs and the group lasso," Statistical Papers, Springer, vol. 60(2), pages 565-584, April.
    2. Ernest K. Ryu & Yanli Liu & Wotao Yin, 2019. "Douglas–Rachford splitting and ADMM for pathological convex optimization," Computational Optimization and Applications, Springer, vol. 74(3), pages 747-778, December.
    3. Weiyang Ding & Michael K. Ng & Wenxing Zhang, 2024. "A generalized alternating direction implicit method for consensus optimization: application to distributed sparse logistic regression," Journal of Global Optimization, Springer, vol. 90(3), pages 727-753, November.
    4. Puya Latafat & Panagiotis Patrinos, 2017. "Asymmetric forward–backward–adjoint splitting for solving monotone inclusions involving three operators," Computational Optimization and Applications, Springer, vol. 68(1), pages 57-93, September.
    5. Sedi Bartz & Rubén Campoy & Hung M. Phan, 2022. "An Adaptive Alternating Direction Method of Multipliers," Journal of Optimization Theory and Applications, Springer, vol. 195(3), pages 1019-1055, December.
    6. TAYLOR, Adrien B. & HENDRICKX, Julien M. & François GLINEUR, 2016. "Exact worst-case performance of first-order methods for composite convex optimization," LIDAM Discussion Papers CORE 2016052, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    7. Wang, Yugang & Huang, Ting-Zhu & Zhao, Xi-Le & Deng, Liang-Jian & Ji, Teng-Yu, 2020. "A convex single image dehazing model via sparse dark channel prior," Applied Mathematics and Computation, Elsevier, vol. 375(C).
    8. Sun, Shilin & Wang, Tianyang & Yang, Hongxing & Chu, Fulei, 2022. "Damage identification of wind turbine blades using an adaptive method for compressive beamforming based on the generalized minimax-concave penalty function," Renewable Energy, Elsevier, vol. 181(C), pages 59-70.
    9. David Degras, 2021. "Sparse group fused lasso for model segmentation: a hybrid approach," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 15(3), pages 625-671, September.
    10. Anda Tang & Pei Quan & Lingfeng Niu & Yong Shi, 2022. "A Survey for Sparse Regularization Based Compression Methods," Annals of Data Science, Springer, vol. 9(4), pages 695-722, August.
    11. Christian Grussler & Pontus Giselsson, 2022. "Efficient Proximal Mapping Computation for Low-Rank Inducing Norms," Journal of Optimization Theory and Applications, Springer, vol. 192(1), pages 168-194, January.
    12. Nguyen Hieu Thao, 2018. "A convergent relaxation of the Douglas–Rachford algorithm," Computational Optimization and Applications, Springer, vol. 70(3), pages 841-863, July.
    13. Rodrigo Verschae & Takekazu Kato & Takashi Matsuyama, 2016. "Energy Management in Prosumer Communities: A Coordinated Approach," Energies, MDPI, vol. 9(7), pages 1-27, July.
    14. Jérôme Bolte & Edouard Pauwels, 2016. "Majorization-Minimization Procedures and Convergence of SQP Methods for Semi-Algebraic and Tame Programs," Mathematics of Operations Research, INFORMS, vol. 41(2), pages 442-465, May.
    15. Na Zhao & Qingzhi Yang & Yajun Liu, 2017. "Computing the generalized eigenvalues of weakly symmetric tensors," Computational Optimization and Applications, Springer, vol. 66(2), pages 285-307, March.
    16. B. Abbas & H. Attouch & Benar F. Svaiter, 2014. "Newton-Like Dynamics and Forward-Backward Methods for Structured Monotone Inclusions in Hilbert Spaces," Journal of Optimization Theory and Applications, Springer, vol. 161(2), pages 331-360, May.
    17. A. Chambolle & Ch. Dossal, 2015. "On the Convergence of the Iterates of the “Fast Iterative Shrinkage/Thresholding Algorithm”," Journal of Optimization Theory and Applications, Springer, vol. 166(3), pages 968-982, September.
    18. Verschae, Rodrigo & Kawashima, Hiroaki & Kato, Takekazu & Matsuyama, Takashi, 2016. "Coordinated energy management for inter-community imbalance minimization," Renewable Energy, Elsevier, vol. 87(P2), pages 922-935.
    19. Philippe Mahey & Jonas Koko & Arnaud Lenoir, 2017. "Decomposition methods for a spatial model for long-term energy pricing problem," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 85(1), pages 137-153, February.
    20. Pham Duy Khanh & Boris S. Mordukhovich & Vo Thanh Phat & Dat Ba Tran, 2023. "Generalized damped Newton algorithms in nonsmooth optimization via second-order subdifferentials," Journal of Global Optimization, Springer, vol. 86(1), pages 93-122, May.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:8:p:1275-:d:792063. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.