IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i24p4639-d996682.html
   My bibliography  Save this article

Robust Synchronization of Fractional-Order Chaotic System Subject to Disturbances

Author

Listed:
  • Dongya Li

    (Applied Technology College of Soochow University, Suzhou 215325, China)

  • Xiaoping Zhang

    (Applied Technology College of Soochow University, Suzhou 215325, China)

  • Shuang Wang

    (Applied Technology College of Soochow University, Suzhou 215325, China)

  • Fengxiang You

    (School of Mechanical and Electrical Engineering, Soochow University, Suzhou 215021, China)

Abstract

This paper studies the synchronization problem for a class of chaotic systems subject to disturbances. The nonlinear functions contained in the master and slave systems are assumed to be incremental quadratic constraints. Under some assumptions, a feedback law is designed so that the error system behaves like the H ∞ performance. Meanwhile, the detailed algorithm for computing the incremental multiplier matrix is also given. Finally, one numerical example and one practical example are simulated to show the effectiveness of the designed method.

Suggested Citation

  • Dongya Li & Xiaoping Zhang & Shuang Wang & Fengxiang You, 2022. "Robust Synchronization of Fractional-Order Chaotic System Subject to Disturbances," Mathematics, MDPI, vol. 10(24), pages 1-15, December.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:24:p:4639-:d:996682
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/24/4639/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/24/4639/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Agrawal, S.K. & Srivastava, M. & Das, S., 2012. "Synchronization of fractional order chaotic systems using active control method," Chaos, Solitons & Fractals, Elsevier, vol. 45(6), pages 737-752.
    2. C. Udrişte & M. Ferrara & D. Zugrăvescu & F. Munteanu, 2012. "Controllability of a Nonholonomic Macroeconomic System," Journal of Optimization Theory and Applications, Springer, vol. 154(3), pages 1036-1054, September.
    3. Tavazoei, Mohammad Saleh & Haeri, Mohammad, 2009. "A note on the stability of fractional order systems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(5), pages 1566-1576.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wafaa S. Sayed & Moheb M. R. Henein & Salwa K. Abd-El-Hafiz & Ahmed G. Radwan, 2017. "Generalized Dynamic Switched Synchronization between Combinations of Fractional-Order Chaotic Systems," Complexity, Hindawi, vol. 2017, pages 1-17, February.
    2. Liang, Yuqin & Jia, Yunfeng, 2022. "Stability and Hopf bifurcation of a diffusive plankton model with time-delay and mixed nonlinear functional responses," Chaos, Solitons & Fractals, Elsevier, vol. 163(C).
    3. Laarem, Guessas, 2021. "A new 4-D hyper chaotic system generated from the 3-D Rösslor chaotic system, dynamical analysis, chaos stabilization via an optimized linear feedback control, it’s fractional order model and chaos sy," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    4. Kocamaz, Uğur Erkin & Cevher, Barış & Uyaroğlu, Yılmaz, 2017. "Control and synchronization of chaos with sliding mode control based on cubic reaching rule," Chaos, Solitons & Fractals, Elsevier, vol. 105(C), pages 92-98.
    5. Muñoz-Vázquez, Aldo Jonathan & Ortiz-Moctezuma, Manuel Benjamín & Sánchez-Orta, Anand & Parra-Vega, Vicente, 2019. "Adaptive robust control of fractional-order systems with matched and mismatched disturbances," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 162(C), pages 85-96.
    6. Silva-Juárez, Alejandro & Tlelo-Cuautle, Esteban & de la Fraga, Luis Gerardo & Li, Rui, 2021. "Optimization of the Kaplan-Yorke dimension in fractional-order chaotic oscillators by metaheuristics," Applied Mathematics and Computation, Elsevier, vol. 394(C).
    7. Gao, Wei & Yan, Li & Saeedi, Mohammadhossein & Saberi Nik, Hassan, 2018. "Ultimate bound estimation set and chaos synchronization for a financial risk system," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 154(C), pages 19-33.
    8. Shukla, Manoj Kumar & Sharma, B.B., 2017. "Backstepping based stabilization and synchronization of a class of fractional order chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 274-284.
    9. Yifan Zhang & Tianzeng Li & Zhiming Zhang & Yu Wang, 2022. "Novel Methods for the Global Synchronization of the Complex Dynamical Networks with Fractional-Order Chaotic Nodes," Mathematics, MDPI, vol. 10(11), pages 1-22, June.
    10. Ravi Agarwal & Snezhana Hristova & Donal O’Regan, 2018. "Applications of Lyapunov Functions to Caputo Fractional Differential Equations," Mathematics, MDPI, vol. 6(11), pages 1-17, October.
    11. Liu, Q.X. & Liu, J.K. & Chen, Y.M., 2017. "An analytical criterion for jump phenomena in fractional Duffing oscillators," Chaos, Solitons & Fractals, Elsevier, vol. 98(C), pages 216-219.
    12. Kingni, Sifeu Takougang & Pham, Viet-Thanh & Jafari, Sajad & Woafo, Paul, 2017. "A chaotic system with an infinite number of equilibrium points located on a line and on a hyperbola and its fractional-order form," Chaos, Solitons & Fractals, Elsevier, vol. 99(C), pages 209-218.
    13. Fiaz, Muhammad & Aqeel, Muhammad & Marwan, Muhammad & Sabir, Muhammad, 2022. "Integer and fractional order analysis of a 3D system and generalization of synchronization for a class of chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    14. Michal Fečkan & T. Sathiyaraj & JinRong Wang, 2020. "Synchronization of Butterfly Fractional Order Chaotic System," Mathematics, MDPI, vol. 8(3), pages 1-12, March.
    15. Yadav, Vijay K. & Shukla, Vijay K. & Das, Subir, 2019. "Difference synchronization among three chaotic systems with exponential term and its chaos control," Chaos, Solitons & Fractals, Elsevier, vol. 124(C), pages 36-51.
    16. Gong, Xiao-Li & Liu, Xi-Hua & Xiong, Xiong, 2019. "Chaotic analysis and adaptive synchronization for a class of fractional order financial system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 522(C), pages 33-42.
    17. Wang, Feifei & Chen, Diyi & Xu, Beibei & Zhang, Hao, 2016. "Nonlinear dynamics of a novel fractional-order Francis hydro-turbine governing system with time delay," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 329-338.
    18. Zhang, Zhe & Zhang, Jing & Ai, Zhaoyang & Cheng, FanYong & Liu, Feng, 2020. "A novel general stability criterion of time-delay fractional-order nonlinear systems based on WILL Deduction Method," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 178(C), pages 328-344.
    19. Chakraborty, Arkaprovo & Veeresha, P., 2024. "Investigating the dynamics, synchronization and control of chaos within a transformed fractional Samardzija–Greller framework," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    20. Khanzadeh, Alireza & Pourgholi, Mahdi, 2016. "Robust Synchronization of Fractional-Order Chaotic Systems at a Pre-Specified Time Using Sliding Mode Controller with Time-Varying Switching Surfaces," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 69-77.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:24:p:4639-:d:996682. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.