IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v124y2019icp36-51.html

Difference synchronization among three chaotic systems with exponential term and its chaos control

Author

Listed:
  • Yadav, Vijay K.
  • Shukla, Vijay K.
  • Das, Subir

Abstract

In this article, the difference synchronization and chaos control of chaotic systems with nonlinear exponential terms have been studied by using the feedback control method. The chaotic systems in the presence of an exponential terms behave differently from the polynomial chaotic systems, whose dynamics will also be different. The Routh-Hurwitz condition is used during chaos control and synchronization. The nonlinear ten-ring chaotic system, 3D chaotic system, new 3D chaotic system are considered to simulate the difference synchronization scheme for continuous case, and Wang, 3D Henon map and Rossler systems are considered during simulation of discrete time chaotic systems. The numerical simulations and the graphical results are presented to show the effectiveness and reliability of difference synchronization for continuous and discrete time chaotic systems.

Suggested Citation

  • Yadav, Vijay K. & Shukla, Vijay K. & Das, Subir, 2019. "Difference synchronization among three chaotic systems with exponential term and its chaos control," Chaos, Solitons & Fractals, Elsevier, vol. 124(C), pages 36-51.
  • Handle: RePEc:eee:chsofr:v:124:y:2019:i:c:p:36-51
    DOI: 10.1016/j.chaos.2019.04.031
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077919301407
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2019.04.031?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Agrawal, S.K. & Srivastava, M. & Das, S., 2012. "Synchronization of fractional order chaotic systems using active control method," Chaos, Solitons & Fractals, Elsevier, vol. 45(6), pages 737-752.
    2. Li, Guo-Hui, 2006. "Generalized projective synchronization of two chaotic systems by using active control," Chaos, Solitons & Fractals, Elsevier, vol. 30(1), pages 77-82.
    3. Bernd Blasius & Amit Huppert & Lewi Stone, 1999. "Complex dynamics and phase synchronization in spatially extended ecological systems," Nature, Nature, vol. 399(6734), pages 354-359, May.
    4. Singh, Jay Prakash & Roy, B.K., 2016. "The nature of Lyapunov exponents is (+, +, −, −). Is it a hyperchaotic system?," Chaos, Solitons & Fractals, Elsevier, vol. 92(C), pages 73-85.
    5. Z. Néda & E. Ravasz & Y. Brechet & T. Vicsek & A.-L. Barabási, 2000. "The sound of many hands clapping," Nature, Nature, vol. 403(6772), pages 849-850, February.
    6. Li, Guo-Hui, 2006. "Projective synchronization of chaotic system using backstepping control," Chaos, Solitons & Fractals, Elsevier, vol. 29(2), pages 490-494.
    7. Steven H. Strogatz & Daniel M. Abrams & Allan McRobie & Bruno Eckhardt & Edward Ott, 2005. "Crowd synchrony on the Millennium Bridge," Nature, Nature, vol. 438(7064), pages 43-44, November.
    8. Park, Ju H., 2006. "Synchronization of Genesio chaotic system via backstepping approach," Chaos, Solitons & Fractals, Elsevier, vol. 27(5), pages 1369-1375.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Man-Wen Tian & Shu-Rong Yan & Jinping Liu & Khalid A. Alattas & Ardashir Mohammadzadeh & Mai The Vu, 2022. "A New Type-3 Fuzzy Logic Approach for Chaotic Systems: Robust Learning Algorithm," Mathematics, MDPI, vol. 10(15), pages 1-20, July.
    2. Changjin Xu & Peiluan Li & Maoxin Liao & Zixin Liu & Qimei Xiao & Shuai Yuan, 2019. "Control Scheme for a Fractional-Order Chaotic Genesio-Tesi Model," Complexity, Hindawi, vol. 2019, pages 1-15, September.
    3. Sangpet, Teerawat & Kuntanapreeda, Suwat, 2020. "Finite-time synchronization of hyperchaotic systems based on feedback passivation," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    4. Xuan, Deli & Tang, Ze & Feng, Jianwen & Park, Ju H., 2021. "Cluster synchronization of nonlinearly coupled Lur’e networks: Delayed impulsive adaptive control protocols," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    5. Assali, El Abed, 2021. "Predefined-time synchronization of chaotic systems with different dimensions and applications," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Bin & Zhou, Yiming & Jiang, Min & Zhang, Zengke, 2009. "Synchronizing chaotic systems using control based on tridiagonal structure," Chaos, Solitons & Fractals, Elsevier, vol. 39(5), pages 2274-2281.
    2. Elabbasy, E.M. & El-Dessoky, M.M., 2008. "Synchronization of van der Pol oscillator and Chen chaotic dynamical system," Chaos, Solitons & Fractals, Elsevier, vol. 36(5), pages 1425-1435.
    3. Li, Jiayan & Cao, Jinde & Liu, Heng, 2022. "State observer-based fuzzy echo state network sliding mode control for uncertain strict-feedback chaotic systems without backstepping," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    4. Grassi, Giuseppe, 2009. "Observer-based hyperchaos synchronization in cascaded discrete-time systems," Chaos, Solitons & Fractals, Elsevier, vol. 40(2), pages 1029-1039.
    5. El-Dessoky, M.M., 2009. "Synchronization and anti-synchronization of a hyperchaotic Chen system," Chaos, Solitons & Fractals, Elsevier, vol. 39(4), pages 1790-1797.
    6. Sharma, B.B. & Kar, I.N., 2011. "Stabilization and tracking controller for a class of nonlinear discrete-time systems," Chaos, Solitons & Fractals, Elsevier, vol. 44(10), pages 902-913.
    7. Sun, Yeong-Jeu, 2009. "Exponential synchronization between two classes of chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 39(5), pages 2363-2368.
    8. Hu, Manfeng & Yang, Yongqing & Xu, Zhenyuan & Guo, Liuxiao, 2008. "Hybrid projective synchronization in a chaotic complex nonlinear system," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(3), pages 449-457.
    9. Keiko Yokoyama & Yuji Yamamoto, 2011. "Three People Can Synchronize as Coupled Oscillators during Sports Activities," PLOS Computational Biology, Public Library of Science, vol. 7(10), pages 1-8, October.
    10. Lee, Hae Seong & Park, Jong Il & Kim, Beom Jun, 2021. "Modified Kuramoto model with inverse-square law coupling and spatial time delay," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 582(C).
    11. Chang, Wei-Der, 2009. "PID control for chaotic synchronization using particle swarm optimization," Chaos, Solitons & Fractals, Elsevier, vol. 39(2), pages 910-917.
    12. Hashem Althagafi & Sergei Petrovskii, 2021. "Metapopulation Persistence and Extinction in a Fragmented Random Habitat: A Simulation Study," Mathematics, MDPI, vol. 9(18), pages 1-16, September.
    13. Shoreh, A.A.-H. & Kuznetsov, N.V. & Mokaev, T.N., 2022. "New adaptive synchronization algorithm for a general class of complex hyperchaotic systems with unknown parameters and its application to secure communication," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 586(C).
    14. Signing, V.R. Folifack & Kengne, J. & Pone, J.R. Mboupda, 2019. "Antimonotonicity, chaos, quasi-periodicity and coexistence of hidden attractors in a new simple 4-D chaotic system with hyperbolic cosine nonlinearity," Chaos, Solitons & Fractals, Elsevier, vol. 118(C), pages 187-198.
    15. Eddie Nijholt & Jorge Luis Ocampo-Espindola & Deniz Eroglu & István Z. Kiss & Tiago Pereira, 2022. "Emergent hypernetworks in weakly coupled oscillators," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    16. Ahmadi, Ali Akbar & Majd, Vahid Johari, 2009. "Robust synchronization of a class of uncertain chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 42(2), pages 1092-1096.
    17. Igor Belykh & Mateusz Bocian & Alan R. Champneys & Kevin Daley & Russell Jeter & John H. G. Macdonald & Allan McRobie, 2021. "Emergence of the London Millennium Bridge instability without synchronisation," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    18. Ge, Zheng-Ming & Chang, Ching-Ming & Chen, Yen-Sheng, 2006. "Anti-control of chaos of single time scale brushless dc motors and chaos synchronization of different order systems," Chaos, Solitons & Fractals, Elsevier, vol. 27(5), pages 1298-1315.
    19. Park, Junpyo, 2022. "Effect of external migration on biodiversity in evolutionary dynamics of coupled cyclic competitions," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    20. Peng, Chao-Chung & Chen, Chieh-Li, 2008. "Robust chaotic control of Lorenz system by backstepping design," Chaos, Solitons & Fractals, Elsevier, vol. 37(2), pages 598-608.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:124:y:2019:i:c:p:36-51. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.