IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i20p3816-d943683.html
   My bibliography  Save this article

Analysis of a Transversely Isotropic Annular Circular Cylinder Immersed in a Magnetic Field Using the Moore–Gibson–Thompson Thermoelastic Model and Generalized Ohm’s Law

Author

Listed:
  • Osama Moaaz

    (Department of Mathematics, College of Science, Qassim University, P.O. Box 6644, Buraydah 51482, Saudi Arabia)

  • Ahmed E. Abouelregal

    (Department of Mathematics, College of Science and Arts, Jouf University, Al-Qurayat 77455, Saudi Arabia
    Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt)

  • Fahad Alsharari

    (Department of Mathematics, College of Science and Arts, Jouf University, Al-Qurayat 77455, Saudi Arabia)

Abstract

The main objective of this work is to study the homogeneous thermoelastic interactions in an isotropic hollow thin cylinder immersed in an electric–magnetic field using the linear Moore–Gibson–Thompson theory of thermoelasticity, taking into account the generalized Ohm’s law. The MGT system of thermoelastic equations for the new model is created by incorporating a relaxation period in the Green–Naghdi type III framework. In addition, the Maxwell equations that investigate the effect of the electromagnetic field are presented. While the outer surface of the hollow cylinder is thermally insulated and free of traction, the interior surface is both free of traction and subject to thermal shock. To convert the problem to the space domain only, the Laplace transform methodology is used to solve the governing equations generated in the transformed domain. The theoretical results are computed dynamically and are graphically displayed for a transversely isotropic material using the Honig and Hirdes approach. A comparison of findings based on different (classical and generalized) thermoelastic theories is provided, followed by a discussion on the impact of the applied electromagnetic field.

Suggested Citation

  • Osama Moaaz & Ahmed E. Abouelregal & Fahad Alsharari, 2022. "Analysis of a Transversely Isotropic Annular Circular Cylinder Immersed in a Magnetic Field Using the Moore–Gibson–Thompson Thermoelastic Model and Generalized Ohm’s Law," Mathematics, MDPI, vol. 10(20), pages 1-24, October.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:20:p:3816-:d:943683
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/20/3816/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/20/3816/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ahmed E. Abouelregal & Marin Marin & Fahad Alsharari, 2022. "Thermoelastic Plane Waves in Materials with a Microstructure Based on Micropolar Thermoelasticity with Two Temperature and Higher Order Time Derivatives," Mathematics, MDPI, vol. 10(9), pages 1-21, May.
    2. Singh, Panna Lal & Sarviya, R.M. & Bhagoria, J.L., 2010. "Thermal performance of linear Fresnel reflecting solar concentrator with trapezoidal cavity absorbers," Applied Energy, Elsevier, vol. 87(2), pages 541-550, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giannuzzi, Alessandra & Diolaiti, Emiliano & Lombini, Matteo & De Rosa, Adriano & Marano, Bruno & Bregoli, Giovanni & Cosentino, Giuseppe & Foppiani, Italo & Schreiber, Laura, 2015. "Enhancing the efficiency of solar concentrators by controlled optical aberrations: Method and photovoltaic application," Applied Energy, Elsevier, vol. 145(C), pages 211-222.
    2. Roostaee, Amin & Ameri, Mehran, 2019. "Effect of Linear Fresnel Concentrators field key parameters on reflectors configuration, Trapezoidal Cavity Receiver dimension, and heat loss," Renewable Energy, Elsevier, vol. 134(C), pages 1447-1464.
    3. Hack, Madeline & Zhu, Guangdong & Wendelin, Tim, 2017. "Evaluation and comparison of an adaptive method technique for improved performance of linear Fresnel secondary designs," Applied Energy, Elsevier, vol. 208(C), pages 1441-1451.
    4. Flores Larsen, S. & Altamirano, M. & Hernández, A., 2012. "Heat loss of a trapezoidal cavity absorber for a linear Fresnel reflecting solar concentrator," Renewable Energy, Elsevier, vol. 39(1), pages 198-206.
    5. Abbas, R. & Sebastián, A. & Montes, M.J. & Valdés, M., 2018. "Optical features of linear Fresnel collectors with different secondary reflector technologies," Applied Energy, Elsevier, vol. 232(C), pages 386-397.
    6. Sebastián, Andrés & Abbas, Rubén & Valdés, Manuel & Casanova, Jesús, 2018. "Innovative thermal storage strategies for Fresnel-based concentrating solar plants with East-West orientation," Applied Energy, Elsevier, vol. 230(C), pages 983-995.
    7. Lecœuvre, Brice & Faggianelli, Ghjuvan Antone & Canaletti, Jean-Louis & Cristofari, Christian, 2020. "Assessment of a flexible solar hybrid thermal and electrical prototype," Renewable Energy, Elsevier, vol. 146(C), pages 1354-1363.
    8. Xie, W.T. & Dai, Y.J. & Wang, R.Z. & Sumathy, K., 2011. "Concentrated solar energy applications using Fresnel lenses: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 2588-2606, August.
    9. Sait, Hani H. & Martinez-Val, Jose M. & Abbas, Ruben & Munoz-Anton, Javier, 2015. "Fresnel-based modular solar fields for performance/cost optimization in solar thermal power plants: A comparison with parabolic trough collectors," Applied Energy, Elsevier, vol. 141(C), pages 175-189.
    10. Montes, María J. & Rubbia, Carlo & Abbas, Rubén & Martínez-Val, José M., 2014. "A comparative analysis of configurations of linear Fresnel collectors for concentrating solar power," Energy, Elsevier, vol. 73(C), pages 192-203.
    11. Abbas, R. & Muñoz, J. & Martínez-Val, J.M., 2012. "Steady-state thermal analysis of an innovative receiver for linear Fresnel reflectors," Applied Energy, Elsevier, vol. 92(C), pages 503-515.
    12. Liang, Qi & He, Ya-Ling & Ren, Qinlong & Zhou, Yi-Peng & Xie, Tao, 2018. "A detailed study on phonon transport in thin silicon membranes with phononic crystal nanostructures," Applied Energy, Elsevier, vol. 227(C), pages 731-741.
    13. Qiu, Yu & He, Ya-Ling & Wu, Ming & Zheng, Zhang-Jing, 2016. "A comprehensive model for optical and thermal characterization of a linear Fresnel solar reflector with a trapezoidal cavity receiver," Renewable Energy, Elsevier, vol. 97(C), pages 129-144.
    14. Cheng, Ze-Dong & Zhao, Xue-Ru & He, Ya-Ling & Qiu, Yu, 2018. "A novel optical optimization model for linear Fresnel reflector concentrators," Renewable Energy, Elsevier, vol. 129(PA), pages 486-499.
    15. Gupta, M.K. & Kaushik, S.C. & Ranjan, K.R. & Panwar, N.L. & Reddy, V. Siva & Tyagi, S.K., 2015. "Thermodynamic performance evaluation of solar and other thermal power generation systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 567-582.
    16. Ma, Jun & Wang, Cheng-Long & Zhou, Yuan & Wang, Rui-Dong, 2021. "Optimized design of a linear Fresnel collector with a compound parabolic secondary reflector," Renewable Energy, Elsevier, vol. 171(C), pages 141-148.
    17. Kundu, B., 2010. "Analytic method for thermal performance and optimization of an absorber plate fin having variable thermal conductivity and overall loss coefficient," Applied Energy, Elsevier, vol. 87(7), pages 2243-2255, July.
    18. Sharaf, Omar Z. & Orhan, Mehmet F., 2015. "Concentrated photovoltaic thermal (CPVT) solar collector systems: Part I – Fundamentals, design considerations and current technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1500-1565.
    19. Dellicompagni, Pablo & Franco, Judith, 2019. "Potential uses of a prototype linear Fresnel concentration system," Renewable Energy, Elsevier, vol. 136(C), pages 1044-1054.
    20. Xiao, Gang & Guo, Kaikai & Luo, Zhongyang & Ni, Mingjiang & Zhang, Yanmei & Wang, Cheng, 2014. "Simulation and experimental study on a spiral solid particle solar receiver," Applied Energy, Elsevier, vol. 113(C), pages 178-188.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:20:p:3816-:d:943683. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.