IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i1p125-d716038.html
   My bibliography  Save this article

Weak Approximations of the Wright–Fisher Process

Author

Listed:
  • Vigirdas Mackevičius

    (Faculty of Mathematics and Informatics, Institute of Mathematics, Vilnius University, Naugarduko 24, 03225 Vilnius, Lithuania
    These authors contributed equally to this work.)

  • Gabrielė Mongirdaitė

    (Faculty of Mathematics and Informatics, Institute of Mathematics, Vilnius University, Naugarduko 24, 03225 Vilnius, Lithuania
    These authors contributed equally to this work.)

Abstract

In this paper, we construct first- and second-order weak split-step approximations for the solutions of the Wright–Fisher equation. The discretization schemes use the generation of, respectively, two- and three-valued random variables at each discretization step. The accuracy of constructed approximations is illustrated by several simulation examples.

Suggested Citation

  • Vigirdas Mackevičius & Gabrielė Mongirdaitė, 2022. "Weak Approximations of the Wright–Fisher Process," Mathematics, MDPI, vol. 10(1), pages 1-20, January.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:1:p:125-:d:716038
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/1/125/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/1/125/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. John C. Cox & Jonathan E. Ingersoll Jr. & Stephen A. Ross, 2005. "A Theory Of The Term Structure Of Interest Rates," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 5, pages 129-164, World Scientific Publishing Co. Pte. Ltd..
    2. Gytenis Lileika & Vigirdas Mackevičius, 2021. "Second-Order Weak Approximations of CKLS and CEV Processes by Discrete Random Variables," Mathematics, MDPI, vol. 9(12), pages 1-20, June.
    3. Aurélien Alfonsi, 2015. "Affine Diffusions and Related Processes: Simulation, Theory and Applications," Post-Print hal-03127212, HAL.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Carmen Ionescu & Radu Constantinescu, 2022. "Solving Nonlinear Second-Order Differential Equations through the Attached Flow Method," Mathematics, MDPI, vol. 10(15), pages 1-14, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Raj Kumari Bahl & Sotirios Sabanis, 2017. "General Price Bounds for Guaranteed Annuity Options," Papers 1707.00807, arXiv.org.
    2. Micha{l} Barski & Rafa{l} {L}ochowski, 2024. "Affine term structure models driven by independent L\'evy processes," Papers 2402.07503, arXiv.org.
    3. Micha{l} Barski & Rafa{l} {L}ochowski, 2023. "Classification and calibration of affine models driven by independent L\'evy processes," Papers 2303.08477, arXiv.org.
    4. Matyas Barczy & Mohamed Ben Alaya & Ahmed Kebaier & Gyula Pap, 2015. "Asymptotic behavior of maximum likelihood estimators for a jump-type Heston model," Papers 1509.08869, arXiv.org, revised May 2018.
    5. Matyas Barczy & Balazs Nyul & Gyula Pap, 2015. "Least squares estimation for the subcritical Heston model based on continuous time observations," Papers 1511.05948, arXiv.org, revised Aug 2018.
    6. Mohamed Ben Alaya & Ahmed Kebaier & Djibril Sarr, 2024. "Financial Stochastic Models Diffusion: From Risk-Neutral to Real-World Measure," Papers 2409.12783, arXiv.org.
    7. Mayerhofer, Eberhard & Stelzer, Robert & Vestweber, Johanna, 2020. "Geometric ergodicity of affine processes on cones," Stochastic Processes and their Applications, Elsevier, vol. 130(7), pages 4141-4173.
    8. Beáta Bolyog & Gyula Pap, 2019. "On conditional least squares estimation for affine diffusions based on continuous time observations," Statistical Inference for Stochastic Processes, Springer, vol. 22(1), pages 41-75, April.
    9. Mohamed Ben Alaya & Ahmed Kebaier & Ngoc Khue Tran, 2020. "Local asymptotic properties for Cox‐Ingersoll‐Ross process with discrete observations," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(4), pages 1401-1464, December.
    10. Jianhai Bao & Jian Wang, 2023. "Coupling methods and exponential ergodicity for two‐factor affine processes," Mathematische Nachrichten, Wiley Blackwell, vol. 296(5), pages 1716-1736, May.
    11. Aur'elien Alfonsi & Edoardo Lombardo, 2022. "High order approximations of the Cox-Ingersoll-Ross process semigroup using random grids," Papers 2209.13334, arXiv.org, revised Apr 2023.
    12. Gadat, Sébastien & Costa, Manon & Huang, Lorick, 2022. "CV@R penalized portfolio optimization with biased stochastic mirror descent," TSE Working Papers 22-1342, Toulouse School of Economics (TSE), revised Nov 2023.
    13. Thomas Kokholm & Martin Stisen, 2015. "Joint pricing of VIX and SPX options with stochastic volatility and jump models," Journal of Risk Finance, Emerald Group Publishing Limited, vol. 16(1), pages 27-48, January.
    14. Hisashi Nakamura & Wataru Nozawa & Akihiko Takahashi, 2009. "Macroeconomic Implications of Term Structures of Interest Rates Under Stochastic Differential Utility with Non-Unitary EIS," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 16(3), pages 231-263, September.
    15. Darren Shannon & Grigorios Fountas, 2021. "Extending the Heston Model to Forecast Motor Vehicle Collision Rates," Papers 2104.11461, arXiv.org, revised May 2021.
    16. Henry, Olan T. & Olekalns, Nilss & Suardi, Sandy, 2007. "Testing for rate dependence and asymmetry in inflation uncertainty: Evidence from the G7 economies," Economics Letters, Elsevier, vol. 94(3), pages 383-388, March.
    17. Ammann, Manuel & Kind, Axel & Wilde, Christian, 2003. "Are convertible bonds underpriced? An analysis of the French market," Journal of Banking & Finance, Elsevier, vol. 27(4), pages 635-653, April.
    18. Sergio Zúñiga, 1999. "Modelos de Tasas de Interés en Chile: Una Revisión," Latin American Journal of Economics-formerly Cuadernos de Economía, Instituto de Economía. Pontificia Universidad Católica de Chile., vol. 36(108), pages 875-893.
    19. Sandrine Lardic & Claire Gauthier, 2003. "Un modèle multifactoriel des spreads de crédit : estimation sur panels complets et incomplets," Économie et Prévision, Programme National Persée, vol. 159(3), pages 53-69.
    20. A. Itkin & V. Shcherbakov & A. Veygman, 2019. "New Model For Pricing Quanto Credit Default Swaps," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(03), pages 1-37, May.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:1:p:125-:d:716038. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.