IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i19p3513-d925845.html
   My bibliography  Save this article

Network Thermodynamics-Based Scalable Compartmental Model for Multi-Strain Epidemics

Author

Listed:
  • Joseph Pateras

    (Department of Computer Science, Virginia Commonwealth University, Richmond, VA 23284, USA)

  • Ashwin Vaidya

    (Department of Mathematics, Montclair State University, Montclair, NJ 07043, USA)

  • Preetam Ghosh

    (Department of Computer Science, Virginia Commonwealth University, Richmond, VA 23284, USA)

Abstract

SARS-CoV-2 continues to upend human life by posing novel threats related to disease spread and mutations. Current models for the disease burden of SARS-CoV-2 consider the aggregate nature of the virus without differentiating between the potency of its multiple strains. Hence, there is a need to create a fundamental modeling framework for multi-strain viruses that considers the competing viral pathogenic pathways. Alongside the consideration that other viral pathogens may coexist, there is also a need for a generalizable modeling framework to account for multiple epidemics (i.e., multi-demics) scenarios, such as influenza and COVID-19 occurring simultaneously. We present a fundamental network thermodynamics approach for assessing, determining, and predicting viral outbreak severity, which extends well-known standard epidemiological models. In particular, we use historical data from New York City’s 2011–2019 influenza seasons and SARS-CoV-2 spread to identify the model parameters. In our model-based analysis, we employ a standard susceptible–infected–recovered (SIR) model with pertinent generalizations to account for multi-strain and multi-demics scenarios. We show that the reaction affinities underpinning the formation processes of our model can be used to categorize the severity of infectious or deceased populations. The spontaneity of occurrence captured by the change in Gibbs free energy of reaction ( ∆ G ) in the system suggests the stability of forward occurring population transfers. The magnitude of ∆ G is used to examine past influenza outbreaks and infer epidemiological factors, such as mortality and case burden. This method can be extrapolated for wide-ranging utility in computational epidemiology. The risk of overlapping multi-demics seasons between influenza and SARS-CoV-2 will persist as a significant threat in forthcoming years. Further, the possibility of mutating strains requires novel ways of analyzing the network of competing infection pathways. The approach outlined in this study allows for the identification of new stable strains and the potential increase in disease burden from a complex systems perspective, thereby allowing for a potential response to the significant question: are the effects of a multi-demic greater than the sum of its individual viral epidemics?

Suggested Citation

  • Joseph Pateras & Ashwin Vaidya & Preetam Ghosh, 2022. "Network Thermodynamics-Based Scalable Compartmental Model for Multi-Strain Epidemics," Mathematics, MDPI, vol. 10(19), pages 1-19, September.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:19:p:3513-:d:925845
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/19/3513/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/19/3513/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lewi Stone & Ronen Olinky & Amit Huppert, 2007. "Seasonal dynamics of recurrent epidemics," Nature, Nature, vol. 446(7135), pages 533-536, March.
    2. Mishra, A.M. & Purohit, S.D. & Owolabi, K.M. & Sharma, Y.D., 2020. "A nonlinear epidemiological model considering asymptotic and quarantine classes for SARS CoV-2 virus," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    3. Alexandros Leontitsis & Abiola Senok & Alawi Alsheikh-Ali & Younus Al Nasser & Tom Loney & Aamena Alshamsi, 2021. "SEAHIR: A Specialized Compartmental Model for COVID-19," IJERPH, MDPI, vol. 18(5), pages 1-11, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pedro, S.A. & Rwezaura, H. & Mandipezar, A. & Tchuenche, J.M., 2021. "Qualitative Analysis of an influenza model with biomedical interventions," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    2. Wang Xiang & Li Chen & Qunjie Peng & Bing Wang & Xiaobing Liu, 2022. "How Effective Is a Traffic Control Policy in Blocking the Spread of COVID-19? A Case Study of Changsha, China," IJERPH, MDPI, vol. 19(13), pages 1-17, June.
    3. Christensen, Claire & Albert, István & Grenfell, Bryan & Albert, Réka, 2010. "Disease dynamics in a dynamic social network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(13), pages 2663-2674.
    4. Kaniadakis, G., 2024. "Novel class of susceptible–infectious–recovered models involving power-law interactions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 633(C).
    5. Victoria Chebotaeva & Paula A. Vasquez, 2023. "Erlang-Distributed SEIR Epidemic Models with Cross-Diffusion," Mathematics, MDPI, vol. 11(9), pages 1-18, May.
    6. Timothy R. Julian & Robert A. Canales & James O. Leckie & Alexandria B. Boehm, 2009. "A Model of Exposure to Rotavirus from Nondietary Ingestion Iterated by Simulated Intermittent Contacts," Risk Analysis, John Wiley & Sons, vol. 29(5), pages 617-632, May.
    7. Hu, Zengyun & Teng, Zhidong & Zhang, Tailei & Zhou, Qiming & Chen, Xi, 2017. "Globally asymptotically stable analysis in a discrete time eco-epidemiological system," Chaos, Solitons & Fractals, Elsevier, vol. 99(C), pages 20-31.
    8. Yaming Zhang & Jiaqi Zhang & Yaya Hamadou Koura & Changyuan Feng & Yanyuan Su & Wenjie Song & Linghao Kong, 2023. "Multiple Concurrent Causal Relationships and Multiple Governance Pathways for Non-Pharmaceutical Intervention Policies in Pandemics: A Fuzzy Set Qualitative Comparative Analysis Based on 102 Countries," IJERPH, MDPI, vol. 20(2), pages 1-16, January.
    9. Ross Sparks & Tim Keighley & David Muscatello, 2010. "Early warning CUSUM plans for surveillance of negative binomial daily disease counts," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(11), pages 1911-1929.
    10. Abidemi, Afeez & Owolabi, Kolade M. & Pindza, Edson, 2022. "Modelling the transmission dynamics of Lassa fever with nonlinear incidence rate and vertical transmission," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 597(C).
    11. Jiraporn Lamwong & Napasool Wongvanich & I-Ming Tang & Puntani Pongsumpun, 2023. "Optimal Control Strategy of a Mathematical Model for the Fifth Wave of COVID-19 Outbreak (Omicron) in Thailand," Mathematics, MDPI, vol. 12(1), pages 1-29, December.
    12. Derek Huang & Huanyu Tao & Qilong Wu & Sheng-You Huang & Yi Xiao, 2021. "Modeling of the Long-Term Epidemic Dynamics of COVID-19 in the United States," IJERPH, MDPI, vol. 18(14), pages 1-17, July.
    13. Nkwayep, C. Hameni & Bowong, S. & Tewa, J.J. & Kurths, J., 2020. "Short-term forecasts of the COVID-19 pandemic: a study case of Cameroon," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    14. Julia B Wenger & Elena N Naumova, 2010. "Seasonal Synchronization of Influenza in the United States Older Adult Population," PLOS ONE, Public Library of Science, vol. 5(4), pages 1-11, April.
    15. Sahoo, Banshidhar & Poria, Swarup, 2015. "Effects of allochthonous inputs in the control of infectious disease of prey," Chaos, Solitons & Fractals, Elsevier, vol. 75(C), pages 1-19.
    16. Khajji, Bouchaib & Kouidere, Abdelfatah & Elhia, Mohamed & Balatif, Omar & Rachik, Mostafa, 2021. "Fractional optimal control problem for an age-structured model of COVID-19 transmission," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    17. Yu, Zhenhua & Zhang, Jingmeng & Zhang, Yun & Cong, Xuya & Li, Xiaobo & Mostafa, Almetwally M., 2024. "Mathematical modeling and simulation for COVID-19 with mutant and quarantined strategy," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    18. Baba, Isa Abdullahi & Hincal, Evren, 2018. "A model for influenza with vaccination and awareness," Chaos, Solitons & Fractals, Elsevier, vol. 106(C), pages 49-55.
    19. José M Ponciano & Marcos A Capistrán, 2011. "First Principles Modeling of Nonlinear Incidence Rates in Seasonal Epidemics," PLOS Computational Biology, Public Library of Science, vol. 7(2), pages 1-14, February.
    20. Steindorf, Vanessa & Srivastav, Akhil Kumar & Stollenwerk, Nico & Kooi, Bob W. & Aguiar, Maíra, 2022. "Modeling secondary infections with temporary immunity and disease enhancement factor: Mechanisms for complex dynamics in simple epidemiological models," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:19:p:3513-:d:925845. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.