IDEAS home Printed from https://ideas.repec.org/a/gam/jlogis/v9y2025i3p85-d1689946.html
   My bibliography  Save this article

Managing Home Healthcare System Using Capacitated Vehicle Routing Problem with Time Windows: A Case Study in Chiang Mai, Thailand

Author

Listed:
  • Sirilak Phonin

    (Department of Mathematics, Faculty of Science and Agricultural Technology, Rajamangala University of Technology Lanna Tak, Tak 63000, Thailand)

  • Chulin Likasiri

    (Department of Mathematics, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand)

  • Radom Pongvuthithum

    (Department of Mechanical Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai 50200, Thailand)

  • Kornphong Chonsiripong

    (Faculty of Science at Sriracha, Kasetsart University, Sriracha Campus, Chonburi 20230, Thailand)

Abstract

Background : The Vehicle Routing Problem with Time Windows (VRPTW) has been extensively researched due to its applicability across various real-world domains, including logistics, healthcare, and distribution systems. With the global elderly population projected to continue increasing, the demand for home healthcare (HHC) services is also on the rise. This work focuses on a specific application within an HHC system, aiming to minimize the total completion time for a fleet of vehicles delivering healthcare services to patients at home. Methods : We propose a mathematical model for the VRPTW, targeting a reduction in both customer and server waiting times on each route and seeking to decrease the total completion time. Our proposed algorithm employs a tabu search to narrow the search space, leveraging a greedy algorithm to establish the tabu list. Results : Our experimental results, based on Solomon’s benchmark datasets, demonstrate that the proposed algorithms achieve optimal solutions, particularly in minimizing total completion time compared to traditional methods, in a case study involving 400 customers where vehicles’ hours are restricted to align with caregivers’ average daily working hours. Conclusions : Our algorithm resulted in a 59% reduction in the number of vehicles required compared to the most recent algorithms, which combine k-mean clustering and local search.

Suggested Citation

  • Sirilak Phonin & Chulin Likasiri & Radom Pongvuthithum & Kornphong Chonsiripong, 2025. "Managing Home Healthcare System Using Capacitated Vehicle Routing Problem with Time Windows: A Case Study in Chiang Mai, Thailand," Logistics, MDPI, vol. 9(3), pages 1-23, June.
  • Handle: RePEc:gam:jlogis:v:9:y:2025:i:3:p:85-:d:1689946
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2305-6290/9/3/85/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2305-6290/9/3/85/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ran Liu & Biao Yuan & Zhibin Jiang, 2019. "A branch-and-price algorithm for the home-caregiver scheduling and routing problem with stochastic travel and service times," Flexible Services and Manufacturing Journal, Springer, vol. 31(4), pages 989-1011, December.
    2. Véronique François & Yasemin Arda & Yves Crama, 2019. "Adaptive Large Neighborhood Search for Multitrip Vehicle Routing with Time Windows," Transportation Science, INFORMS, vol. 53(6), pages 1706-1730, November.
    3. Marius M. Solomon, 1987. "Algorithms for the Vehicle Routing and Scheduling Problems with Time Window Constraints," Operations Research, INFORMS, vol. 35(2), pages 254-265, April.
    4. Michael Schneider & Andreas Stenger & Dominik Goeke, 2014. "The Electric Vehicle-Routing Problem with Time Windows and Recharging Stations," Transportation Science, INFORMS, vol. 48(4), pages 500-520, November.
    5. Payakorn Saksuriya & Chulin Likasiri, 2023. "Vehicle Routing Problem with Time Windows to Minimize Total Completion Time in Home Healthcare Systems," Mathematics, MDPI, vol. 11(23), pages 1-23, December.
    6. Olli Bräysy & Michel Gendreau, 2005. "Vehicle Routing Problem with Time Windows, Part I: Route Construction and Local Search Algorithms," Transportation Science, INFORMS, vol. 39(1), pages 104-118, February.
    7. Liu, Ran & Xie, Xiaolan & Augusto, Vincent & Rodriguez, Carlos, 2013. "Heuristic algorithms for a vehicle routing problem with simultaneous delivery and pickup and time windows in home health care," European Journal of Operational Research, Elsevier, vol. 230(3), pages 475-486.
    8. Olli Bräysy & Michel Gendreau, 2005. "Vehicle Routing Problem with Time Windows, Part II: Metaheuristics," Transportation Science, INFORMS, vol. 39(1), pages 119-139, February.
    9. Tomislav Erdelić & Tonči Carić, 2022. "Goods Delivery with Electric Vehicles: Electric Vehicle Routing Optimization with Time Windows and Partial or Full Recharge," Energies, MDPI, vol. 15(1), pages 1-27, January.
    10. Wayne E. Smith, 1956. "Various optimizers for single‐stage production," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 3(1‐2), pages 59-66, March.
    11. Schneider, M. & Stenger, A. & Goeke, D., 2014. "The Electric Vehicle Routing Problem with Time Windows and Recharging Stations," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 62382, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    12. Wy, Juyoung & Kim, Byung-In & Kim, Seongbae, 2013. "The rollon–rolloff waste collection vehicle routing problem with time windows," European Journal of Operational Research, Elsevier, vol. 224(3), pages 466-476.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yanfei Zhu & Chunhui Li & Kwang Y. Lee, 2022. "The NR-EGA for the EVRP Problem with the Electric Energy Consumption Model," Energies, MDPI, vol. 15(10), pages 1-12, May.
    2. Baals, Julian & Emde, Simon & Turkensteen, Marcel, 2023. "Minimizing earliness-tardiness costs in supplier networks—A just-in-time truck routing problem," European Journal of Operational Research, Elsevier, vol. 306(2), pages 707-741.
    3. Jean-François Cordeau & Manuel Iori & Dario Vezzali, 2024. "An updated survey of attended home delivery and service problems with a focus on applications," Annals of Operations Research, Springer, vol. 343(2), pages 885-922, December.
    4. Yi Zhang & Guowei Hua & T. C. E. Cheng & Juliang Zhang, 2020. "Cold chain distribution: How to deal with node and arc time windows?," Annals of Operations Research, Springer, vol. 291(1), pages 1127-1151, August.
    5. Zhenhua Chen & Qiong Chen & Cheng Xue & Yiying Chao, 2025. "PHEV Routing with Hybrid Energy and Partial Charging: Solved via Dantzig–Wolfe Decomposition," Mathematics, MDPI, vol. 13(14), pages 1-29, July.
    6. Qiuping Ni & Yuanxiang Tang, 2023. "A Bibliometric Visualized Analysis and Classification of Vehicle Routing Problem Research," Sustainability, MDPI, vol. 15(9), pages 1-37, April.
    7. Mohamed Cissé & Semih Yalçindag & Yannick Kergosien & Evren Sahin & Christophe Lenté & Andrea Matta, 2017. "OR problems related to Home Health Care: A review of relevant routing and scheduling problems," Post-Print hal-01736714, HAL.
    8. Nan Ding & Jingshuai Yang & Zhibin Han & Jianming Hao, 2022. "Electric-Vehicle Routing Planning Based on the Law of Electric Energy Consumption," Mathematics, MDPI, vol. 10(17), pages 1-27, August.
    9. Hiermann, Gerhard & Puchinger, Jakob & Ropke, Stefan & Hartl, Richard F., 2016. "The Electric Fleet Size and Mix Vehicle Routing Problem with Time Windows and Recharging Stations," European Journal of Operational Research, Elsevier, vol. 252(3), pages 995-1018.
    10. Qi, Mingyao & Lin, Wei-Hua & Li, Nan & Miao, Lixin, 2012. "A spatiotemporal partitioning approach for large-scale vehicle routing problems with time windows," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(1), pages 248-257.
    11. Gitae Kim, 2024. "Electric Vehicle Routing Problem with States of Charging Stations," Sustainability, MDPI, vol. 16(8), pages 1-17, April.
    12. Zhiping Zuo & Yanhui Li & Jing Fu & Jianlin Wu, 2019. "Human Resource Scheduling Model and Algorithm with Time Windows and Multi-Skill Constraints," Mathematics, MDPI, vol. 7(7), pages 1-18, July.
    13. Raeesi, Ramin & Zografos, Konstantinos G., 2020. "The electric vehicle routing problem with time windows and synchronised mobile battery swapping," Transportation Research Part B: Methodological, Elsevier, vol. 140(C), pages 101-129.
    14. Cortés-Murcia, David L. & Prodhon, Caroline & Murat Afsar, H., 2019. "The electric vehicle routing problem with time windows, partial recharges and satellite customers," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 130(C), pages 184-206.
    15. Subramanyam, Anirudh & Wang, Akang & Gounaris, Chrysanthos E., 2018. "A scenario decomposition algorithm for strategic time window assignment vehicle routing problems," Transportation Research Part B: Methodological, Elsevier, vol. 117(PA), pages 296-317.
    16. Mohammad Torkjazi & Nathan Huynh, 2019. "Effectiveness of Dynamic Insertion Scheduling Strategy for Demand-Responsive Paratransit Vehicles Using Agent-Based Simulation," Sustainability, MDPI, vol. 11(19), pages 1-12, September.
    17. Raeesi, Ramin & Zografos, Konstantinos G., 2022. "Coordinated routing of electric commercial vehicles with intra-route recharging and en-route battery swapping," European Journal of Operational Research, Elsevier, vol. 301(1), pages 82-109.
    18. Ehmke, Jan Fabian & Campbell, Ann Melissa, 2014. "Customer acceptance mechanisms for home deliveries in metropolitan areas," European Journal of Operational Research, Elsevier, vol. 233(1), pages 193-207.
    19. Koch, Sebastian & Klein, Robert, 2020. "Route-based approximate dynamic programming for dynamic pricing in attended home delivery," European Journal of Operational Research, Elsevier, vol. 287(2), pages 633-652.
    20. Taş, D. & Gendreau, M. & Dellaert, N. & van Woensel, T. & de Kok, A.G., 2014. "Vehicle routing with soft time windows and stochastic travel times: A column generation and branch-and-price solution approach," European Journal of Operational Research, Elsevier, vol. 236(3), pages 789-799.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlogis:v:9:y:2025:i:3:p:85-:d:1689946. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.