IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v7y2018i4p136-d182918.html
   My bibliography  Save this article

Changes in Human Population Density and Protected Areas in Terrestrial Global Biodiversity Hotspots, 1995–2015

Author

Listed:
  • Caitlin Cunningham

    (Interdisciplinary PhD Programme, Dalhousie University, Halifax, NS B3H 4R2, Canada)

  • Karen F. Beazley

    (School for Resource and Environmental Studies, Dalhousie University, Halifax, NS B3H 4R2, Canada)

Abstract

Biodiversity hotspots are rich in endemic species and threatened by anthropogenic influences and, thus, considered priorities for conservation. In this study, conservation achievements in 36 global biodiversity hotspots (25 identified in 1988, 10 added in 2011, and one in 2016) were evaluated in relation to changes in human population density and protected area coverage between 1995 and 2015. Population densities were compared against 1995 global averages, and percentages of protected area coverage were compared against area-based targets outlined in Aichi target 11 of the Convention on Biological Diversity (17% by 2020) and calls for half Earth (50%). The two factors (average population density and percent protected area coverage) for each hotspot were then plotted to evaluate relative levels of threat to biodiversity conservation. Average population densities in biodiversity hotspots increased by 36% over the 20-year period, and were double the global average. The protected area target of 17% is achieved in 19 of the 36 hotspots; the 17 hotspots where this target has not been met are economically disadvantaged areas as defined by Gross Domestic Product. In 2015, there are seven fewer hotspots (22 in 1995; 15 in 2015) in the highest threat category (i.e., population density exceeding global average, and protected area coverage less than 17%). In the lowest threat category (i.e., population density below the global average, and a protected area coverage of 17% or more), there are two additional hotspots in 2015 as compared to 1995, attributable to gains in protected area. Only two hotspots achieve a target of 50% protection. Although conservation progress has been made in most global biodiversity hotspots, additional efforts are needed to slow and/or reduce population density and achieve protected area targets. Such conservation efforts are likely to require more coordinated and collaborative initiatives, attention to biodiversity objectives beyond protected areas, and support from the global community.

Suggested Citation

  • Caitlin Cunningham & Karen F. Beazley, 2018. "Changes in Human Population Density and Protected Areas in Terrestrial Global Biodiversity Hotspots, 1995–2015," Land, MDPI, vol. 7(4), pages 1-20, November.
  • Handle: RePEc:gam:jlands:v:7:y:2018:i:4:p:136-:d:182918
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/7/4/136/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/7/4/136/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Norman Myers & Russell A. Mittermeier & Cristina G. Mittermeier & Gustavo A. B. da Fonseca & Jennifer Kent, 2000. "Biodiversity hotspots for conservation priorities," Nature, Nature, vol. 403(6772), pages 853-858, February.
    2. Marina Alberti, 2005. "The Effects of Urban Patterns on Ecosystem Function," International Regional Science Review, , vol. 28(2), pages 168-192, April.
    3. C. R. Margules & R. L. Pressey, 2000. "Systematic conservation planning," Nature, Nature, vol. 405(6783), pages 243-253, May.
    4. Oscar Venter & Eric W. Sanderson & Ainhoa Magrach & James R. Allan & Jutta Beher & Kendall R. Jones & Hugh P. Possingham & William F. Laurance & Peter Wood & Balázs M. Fekete & Marc A. Levy & James E., 2016. "Sixteen years of change in the global terrestrial human footprint and implications for biodiversity conservation," Nature Communications, Nature, vol. 7(1), pages 1-11, November.
    5. Richard P. Cincotta & Jennifer Wisnewski & Robert Engelman, 2000. "Human population in the biodiversity hotspots," Nature, Nature, vol. 404(6781), pages 990-992, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Shicheng & Zhang, Heng & Zhou, Xuewu & Yu, Haibin & Li, Wangjun, 2020. "Enhancing protected areas for biodiversity and ecosystem services in the Qinghai–Tibet Plateau," Ecosystem Services, Elsevier, vol. 43(C).
    2. de Castro-Pardo, Mónica & Martín Martín, José María & Azevedo, João C., 2022. "A new composite indicator to assess and monitor performance and drawbacks of the implementation of Aichi Biodiversity Targets," Ecological Economics, Elsevier, vol. 201(C).
    3. Cepic, Michael & Bechtold, Ulrike & Wilfing, Harald, 2022. "Modelling human influences on biodiversity at a global scale–A human ecology perspective," Ecological Modelling, Elsevier, vol. 465(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luis Santiago Castillo & Camilo Andrés Correa Ayram & Clara L. Matallana Tobón & Germán Corzo & Alexandra Areiza & Roy González-M. & Felipe Serrano & Luis Chalán Briceño & Felipe Sánchez Puertas & Ale, 2020. "Connectivity of Protected Areas: Effect of Human Pressure and Subnational Contributions in the Ecoregions of Tropical Andean Countries," Land, MDPI, vol. 9(8), pages 1-19, July.
    2. Mariane Paulina Batalha Roque & José Ambrósio Ferreira Neto & André Luiz Lopes Faria, 2022. "Degraded grassland and the conflict of land use in protected areas of hotspot in Brazil," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(1), pages 1475-1492, January.
    3. Armsworth, Paul R. & Kendall, Bruce E. & Davis, Frank W., 2004. "An introduction to biodiversity concepts for environmental economists," Resource and Energy Economics, Elsevier, vol. 26(2), pages 115-136, June.
    4. Jaiswal, Sreeja & Balietti, Anca & Schäffer, Daniel, 2023. "Environmental Protection and Labor Market Composition," Working Papers 0736, University of Heidelberg, Department of Economics.
    5. Fisher, Brendan & Christopher, Treg, 2007. "Poverty and biodiversity: Measuring the overlap of human poverty and the biodiversity hotspots," Ecological Economics, Elsevier, vol. 62(1), pages 93-101, April.
    6. John A. Gallo & Amanda T. Lombard & Richard M. Cowling, 2022. "Conservation Planning for Action: End-User Engagement in the Development and Dual-Centric Weighting of a Spatial Decision Support System," Land, MDPI, vol. 12(1), pages 1-14, December.
    7. Johnston, Robert J. & Ramachandran, Mahesh & Schultz, Eric T. & Segerson, Kathleen & Besedin, Elena Y., 2011. "Characterizing Spatial Pattern in Ecosystem Service Values when Distance Decay Doesn’t Apply: Choice Experiments and Local Indicators of Spatial Association," 2011 Annual Meeting, July 24-26, 2011, Pittsburgh, Pennsylvania 103374, Agricultural and Applied Economics Association.
    8. Li, Shicheng & Zhang, Heng & Zhou, Xuewu & Yu, Haibin & Li, Wangjun, 2020. "Enhancing protected areas for biodiversity and ecosystem services in the Qinghai–Tibet Plateau," Ecosystem Services, Elsevier, vol. 43(C).
    9. Nobel, Anne & Lizin, Sebastien & Malina, Robert, 2023. "What drives the designation of protected areas? Accounting for spatial dependence using a composite marginal likelihood approach," Ecological Economics, Elsevier, vol. 205(C).
    10. Erica Honeck & Atte Moilanen & Benjamin Guinaudeau & Nicolas Wyler & Martin A. Schlaepfer & Pascal Martin & Arthur Sanguet & Loreto Urbina & Bertrand von Arx & Joëlle Massy & Claude Fischer & Anthony , 2020. "Implementing Green Infrastructure for the Spatial Planning of Peri-Urban Areas in Geneva, Switzerland," Sustainability, MDPI, vol. 12(4), pages 1-20, February.
    11. Morgan Gray & Elisabeth Micheli & Tosha Comendant & Adina Merenlender, 2020. "Climate-Wise Habitat Connectivity Takes Sustained Stakeholder Engagement," Land, MDPI, vol. 9(11), pages 1-21, October.
    12. Li, Shicheng & Zhang, Yili & Wang, Zhaofeng & Li, Lanhui, 2018. "Mapping human influence intensity in the Tibetan Plateau for conservation of ecological service functions," Ecosystem Services, Elsevier, vol. 30(PB), pages 276-286.
    13. Parkhurst, Gregory M. & Shogren, Jason F., 2007. "Spatial incentives to coordinate contiguous habitat," Ecological Economics, Elsevier, vol. 64(2), pages 344-355, December.
    14. Takuya Iwamura & Kerrie A Wilson & Oscar Venter & Hugh P Possingham, 2010. "A Climatic Stability Approach to Prioritizing Global Conservation Investments," PLOS ONE, Public Library of Science, vol. 5(11), pages 1-9, November.
    15. Huirong Yu, 2022. "A multi-scale approach to mapping conservation priorities for rural China based on landscape context," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(9), pages 10803-10828, September.
    16. R. Travis Belote & G. Hugh Irwin, 2017. "Quantifying the National Significance of Local Areas for Regional Conservation Planning: North Carolina’s Mountain Treasures," Land, MDPI, vol. 6(2), pages 1-16, May.
    17. Víctor Rincón & Javier Velázquez & Javier Gutiérrez & Beatriz Sánchez & Ana Hernando & Antonio García-Abril & Tomás Santamaría & Daniel Sánchez-Mata, 2019. "Evaluating European Conservation Areas and Proposal of New Zones of Conservation under the Habitats Directive. Application to Spanish Territories," Sustainability, MDPI, vol. 11(2), pages 1-25, January.
    18. Hopper, Stephen D., 2010. "Sir John Crawford Memorial Address: Plant Diversity at the Turning Point," 2010: Biodiversity and World Food Security: Nourishing the Planet and Its People, 30 August-1 September 2010 125259, Crawford Fund.
    19. Robert F. Baldwin & Karen F. Beazley, 2019. "Emerging Paradigms for Biodiversity and Protected Areas," Land, MDPI, vol. 8(3), pages 1-12, March.
    20. Robert Johnston & Mahesh Ramachandran, 2014. "Modeling Spatial Patchiness and Hot Spots in Stated Preference Willingness to Pay," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 59(3), pages 363-387, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:7:y:2018:i:4:p:136-:d:182918. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.