IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v7y2018i4p114-d173279.html
   My bibliography  Save this article

Modeling Urban Encroachment on the Agricultural Land of the Eastern Nile Delta Using Remote Sensing and a GIS-Based Markov Chain Model

Author

Listed:
  • Kelsee Bratley

    (Department of Earth and Environment, Boston University, 685 Commonwealth Avenue, Boston, MA 02215, USA)

  • Eman Ghoneim

    (Department of Earth and Ocean Sciences, University of North Carolina Wilmington, 601 South College Road, Wilmington, NC 28403-5944, USA)

Abstract

Historically, the Nile Delta has played an integral part in Egyptian civilization, as its fertile soils have been cultivated for centuries. The region offers a lush oasis among the expansive arid climate of Northern Africa; however, in recent decades, many anthropogenic changes to the environment have jeopardized Egypt’s agricultural productivity. Political instability and lack of sufficient regulations regarding urban growth and encroachment have put agricultural land in the area at risk. Advanced geospatial techniques were used to assess the rate at which urban areas are increasing within the region. A hybrid classification of Landsat satellite imagery for the eastern sector of the Nile Delta, between the years 1988 and 2017, was conducted to map major land-use and land-cover (LULC) classes. The statistical change analysis revealed that urban areas increased by 222.5% over the study period (29 years). Results indicated that urban areas are encroaching mainly on established agricultural lands within the Nile Delta. Most of the change has occurred within the past nine years, where approximately 235.60 km 2 of the cultivated lands were transitioned to urban. Nonetheless, at the eastern delta flank, which is bordered by desert, analysis indicated that agricultural lands have experienced a considerable growth throughout the study period due to a major desert reclamation effort. Areas most at risk from future urban expansion were identified. A simulation of future urban expansion, using a Markov Chain algorithm, indicated that the extent to which urban area is simulated to grow in the region is 16.67% (277.3 km 2 ) and 37.82% (843 km 2 ) by the year 2026, and 2050, respectively. The methods used in this study are useful in assessing the rate of urban encroachment on agricultural lands and can be applied to similar at-risk areas in the regions if appropriate site-specific modifications are considered.

Suggested Citation

  • Kelsee Bratley & Eman Ghoneim, 2018. "Modeling Urban Encroachment on the Agricultural Land of the Eastern Nile Delta Using Remote Sensing and a GIS-Based Markov Chain Model," Land, MDPI, vol. 7(4), pages 1-21, October.
  • Handle: RePEc:gam:jlands:v:7:y:2018:i:4:p:114-:d:173279
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/7/4/114/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/7/4/114/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. K C Clarke & S Hoppen & L Gaydos, 1997. "A Self-Modifying Cellular Automaton Model of Historical Urbanization in the San Francisco Bay Area," Environment and Planning B, , vol. 24(2), pages 247-261, April.
    2. Parker, John B. & Coyle, James R., 1981. "Urbanization and Agricultural Policy in Egypt," Foreign Agricultural Economic Report (FAER) 147184, United States Department of Agriculture, Economic Research Service.
    3. Kotaro Iizuka & Brian A. Johnson & Akio Onishi & Damasa B. Magcale-Macandog & Isao Endo & Milben Bragais, 2017. "Modeling Future Urban Sprawl and Landscape Change in the Laguna de Bay Area, Philippines," Land, MDPI, vol. 6(2), pages 1-21, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Elsayed Said Mohamed & Mohamed Abu-hashim & Mohamed A. E. AbdelRahman & Brigitta Schütt & Rosa Lasaponara, 2019. "Evaluating the Effects of Human Activity over the Last Decades on the Soil Organic Carbon Pool Using Satellite Imagery and GIS Techniques in the Nile Delta Area, Egypt," Sustainability, MDPI, vol. 11(9), pages 1-16, May.
    2. Taher M. Radwan, 2019. "Monitoring Agricultural Expansion in a Newly Reclaimed Area in the Western Nile Delta of Egypt Using Landsat Imageries," Agriculture, MDPI, vol. 9(7), pages 1-14, July.
    3. Liye Wang & Xinli Ke & Assem Abu Hatab, 2020. "Trade-Offs between Economic Benefits and Ecosystem Services Value under Three Cropland Protection Scenarios for Wuhan City in China," Land, MDPI, vol. 9(4), pages 1-17, April.
    4. Qingyao Huang & Yihua Liu, 2021. "The Coupling between Urban Expansion and Population Growth: An Analysis of Urban Agglomerations in China (2005–2020)," Sustainability, MDPI, vol. 13(13), pages 1-18, June.
    5. De Yu & Shougeng Hu & Luyi Tong & Cong Xia, 2020. "Spatiotemporal Dynamics of Cultivated Land and Its Influences on Grain Production Potential in Hunan Province, China," Land, MDPI, vol. 9(12), pages 1-22, December.
    6. Xue Wang, 2022. "Changes in Cultivated Land Loss and Landscape Fragmentation in China from 2000 to 2020," Land, MDPI, vol. 11(5), pages 1-16, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Youjung Kim & Galen Newman, 2019. "Climate Change Preparedness: Comparing Future Urban Growth and Flood Risk in Amsterdam and Houston," Sustainability, MDPI, vol. 11(4), pages 1-24, February.
    2. Rifat, Shaikh Abdullah Al & Liu, Weibo, 2022. "Predicting future urban growth scenarios and potential urban flood exposure using Artificial Neural Network-Markov Chain model in Miami Metropolitan Area," Land Use Policy, Elsevier, vol. 114(C).
    3. Liu, Dongya & Zheng, Xinqi & Zhang, Chunxiao & Wang, Hongbin, 2017. "A new temporal–spatial dynamics method of simulating land-use change," Ecological Modelling, Elsevier, vol. 350(C), pages 1-10.
    4. Brian Pickard & Joshua Gray & Ross Meentemeyer, 2017. "Comparing Quantity, Allocation and Configuration Accuracy of Multiple Land Change Models," Land, MDPI, vol. 6(3), pages 1-21, August.
    5. Eda Ustaoglu & Brendan Williams & Laura O. Petrov & Harutyun Shahumyan & Hedwig Van Delden, 2017. "Developing and Assessing Alternative Land-Use Scenarios from the MOLAND Model: A Scenario-Based Impact Analysis Approach for the Evaluation of Rapid Rail Provisions and Urban Development in the Greate," Sustainability, MDPI, vol. 10(1), pages 1-34, December.
    6. A’kif AL-FUGARA & Abdel Rahman AL-SHABEEB & Yahya AL-SHAWABKEH & Hani AL-AMOUSH & Rida AL-ADAMAT, 2018. "Simulation And Prediction Of Urban Spatial Expansion In Highly Vibrant Cities Using The Sleuth Model: A Case Study Of Amman Metropolitan, Jordan," Theoretical and Empirical Researches in Urban Management, Research Centre in Public Administration and Public Services, Bucharest, Romania, vol. 13(1), pages 37-56, February.
    7. Alireza Salahi Moghadam & Ali Soltani & Bruno Parolin, 2018. "Transforming and changing urban centres: the experience of Sydney from 1981 to 2006," Letters in Spatial and Resource Sciences, Springer, vol. 11(1), pages 37-53, March.
    8. Xiaoli Hu & Xin Li & Ling Lu, 2018. "Modeling the Land Use Change in an Arid Oasis Constrained by Water Resources and Environmental Policy Change Using Cellular Automata Models," Sustainability, MDPI, vol. 10(8), pages 1-14, August.
    9. Jaekyung Lee & Galen Newman & Yunmi Park, 2018. "A Comparison of Vacancy Dynamics between Growing and Shrinking Cities Using the Land Transformation Model," Sustainability, MDPI, vol. 10(5), pages 1-17, May.
    10. Syed Amir Manzoor & Aisha Malik & Muhammad Zubair & Geoffrey Griffiths & Martin Lukac, 2019. "Linking Social Perception and Provision of Ecosystem Services in a Sprawling Urban Landscape: A Case Study of Multan, Pakistan," Sustainability, MDPI, vol. 11(3), pages 1-15, January.
    11. Shamik Chakraborty & Ram Avtar & Raveena Raj & Huynh Vuong Thu Minh, 2019. "Village Level Provisioning Ecosystem Services and Their Values to Local Communities in the Peri-Urban Areas of Manila, The Philippines," Land, MDPI, vol. 8(12), pages 1-18, November.
    12. Acevedo, Miguel A. & Marcano, Mariano & Fletcher, Robert J., 2012. "A diffusive logistic growth model to describe forest recovery," Ecological Modelling, Elsevier, vol. 244(C), pages 13-19.
    13. Wickramasuriya, Rohan Chandralal & Bregt, Arnold K. & van Delden, Hedwig & Hagen-Zanker, Alex, 2009. "The dynamics of shifting cultivation captured in an extended Constrained Cellular Automata land use model," Ecological Modelling, Elsevier, vol. 220(18), pages 2302-2309.
    14. Ismail Ercument Ayazli, 2019. "Monitoring of Urban Growth with Improved Model Accuracy by Statistical Methods," Sustainability, MDPI, vol. 11(20), pages 1-14, October.
    15. Shigeaki F. Hasegawa & Takenori Takada, 2019. "Probability of Deriving a Yearly Transition Probability Matrix for Land-Use Dynamics," Sustainability, MDPI, vol. 11(22), pages 1-11, November.
    16. Aquilué, Núria & De Cáceres, Miquel & Fortin, Marie-Josée & Fall, Andrew & Brotons, Lluís, 2017. "A spatial allocation procedure to model land-use/land-cover changes: Accounting for occurrence and spread processes," Ecological Modelling, Elsevier, vol. 344(C), pages 73-86.
    17. Erqi Xu & Yimeng Chen, 2019. "Modeling Intersecting Processes of Wetland Shrinkage and Urban Expansion by a Time-Varying Methodology," Sustainability, MDPI, vol. 11(18), pages 1-24, September.
    18. Yishao Shi & Jie Wu & Shouzheng Shi, 2017. "Study of the Simulated Expansion Boundary of Construction Land in Shanghai Based on a SLEUTH Model," Sustainability, MDPI, vol. 9(6), pages 1-15, May.
    19. Merlin, Louis A. & Levine, Jonathan & Grengs, Joe, 2018. "Accessibility analysis for transportation projects and plans," Transport Policy, Elsevier, vol. 69(C), pages 35-48.
    20. Zhuohang Xin & Chao Li & Haixing Liu & Hua Shang & Lei Ye & Yu Li & Chi Zhang, 2018. "Evaluation of Temporal and Spatial Ecosystem Services in Dalian, China: Implications for Urban Planning," Sustainability, MDPI, vol. 10(4), pages 1-14, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:7:y:2018:i:4:p:114-:d:173279. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.