IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v14y2025i9p1764-d1738081.html
   My bibliography  Save this article

Spatio-Temporal Relationship and Transition Patterns of Ecosystem Service Value and Land-Use Carbon Emissions on the Loess Plateau

Author

Listed:
  • Yaxuan Yang

    (School of Public Management, Inner Mongolia University, Hohhot 010070, China)

  • Hongliang Wang

    (School of Public Management, Inner Mongolia University, Hohhot 010070, China)

  • Yining Gao

    (College of Life Science and Technology, Inner Mongolia Normal University, Hohhot 010021, China)

  • Chang Ge

    (School of Urban Planning and Design, Shenzhen Graduate School, Peking University, Shenzhen 518055, China)

  • Jiansheng Wu

    (School of Urban Planning and Design, Shenzhen Graduate School, Peking University, Shenzhen 518055, China)

Abstract

Ecosystem services play a vital role in human well-being, with land-use changes exerting substantial influence on ecosystem service value (ESV) and land-use carbon emissions (LUCEs). Understanding the spatio-temporal relationship and transition dynamics between ESV and LUCEs is essential for promoting high-quality ecological development aligned with the “dual carbon” objective. This study takes the Loess Plateau as the research object. Based on five-phase land-use data from 2000 to 2020, the ESV and LUCEs are calculated. Exploratory spatio-temporal data analysis is used to explore their spatio-temporal relationship and transition paths, and the quadrant model is introduced to analyze the transition patterns from the perspective of ecological quality. The results indicate the following: (1) From 2000 to 2020, the ESV of the Loess Plateau increased from CNY 579.032 billion to CNY 582.470 billion, with an overall increase of only 0.15%. Among the changes in land use, changes in forest and grassland significantly affected the ESV. (2) The LUCEs from land use on the Loess Plateau increased from 137.15 Mt to 458.43 Mt, with an average annual growth rate of 6.22%. Affected by industrialization and urbanization, the LUCEs showed significant spatial differences at the provincial and county scales. (3) There was a certain positive spatial correlation between ESV and LUCEs. The distribution of significantly correlated areas did not change significantly from 2000 to 2020, and the relationship characteristics were mainly characterized by Type IV transitions. (4) At the county scale, ESV and LUCEs exhibited temporal stability, with most counties situated in the general ecological category, indicating substantial potential for enhancing regional ecological quality. These research outcomes offer a foundational framework for devising tailored regional carbon emission reduction strategies.

Suggested Citation

  • Yaxuan Yang & Hongliang Wang & Yining Gao & Chang Ge & Jiansheng Wu, 2025. "Spatio-Temporal Relationship and Transition Patterns of Ecosystem Service Value and Land-Use Carbon Emissions on the Loess Plateau," Land, MDPI, vol. 14(9), pages 1-23, August.
  • Handle: RePEc:gam:jlands:v:14:y:2025:i:9:p:1764-:d:1738081
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/14/9/1764/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/14/9/1764/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ruijie Zhang & Kanhua Yu & Pingping Luo, 2024. "Spatio-Temporal Relationship between Land Use Carbon Emissions and Ecosystem Service Value in Guanzhong, China," Land, MDPI, vol. 13(1), pages 1-21, January.
    2. Guo Cai & Yuying Lin & Fazi Zhang & Shihe Zhang & Linsheng Wen & Baoyin Li, 2022. "Response of Ecosystem Service Value to Landscape Pattern Changes under Low-Carbon Scenario: A Case Study of Fujian Coastal Areas," Land, MDPI, vol. 11(12), pages 1-23, December.
    3. Jiaying Peng & Yuhang Zheng & Cenjie Liu, 2022. "The Impact of Urban Construction Land Use Change on Carbon Emissions: Evidence from the China Land Market in 2000–2019," Land, MDPI, vol. 11(9), pages 1-19, August.
    4. Bhaskar Shrestha & Qinghua Ye & Nitesh Khadka, 2019. "Assessment of Ecosystem Services Value Based on Land Use and Land Cover Changes in the Transboundary Karnali River Basin, Central Himalayas," Sustainability, MDPI, vol. 11(11), pages 1-19, June.
    5. Chuanlong Li & Yuanqing Li & Kaifang Shi & Qingyuan Yang, 2020. "A Multiscale Evaluation of the Coupling Relationship between Urban Land and Carbon Emissions: A Case Study of Chongqing, China," IJERPH, MDPI, vol. 17(10), pages 1-13, May.
    6. Xuanli Wang & Huifang Yu & Yiqun Wu & Congyue Zhou & Yonghua Li & Xingyu Lai & Jiahao He, 2024. "Spatio-Temporal Dynamics of Carbon Emissions and Their Influencing Factors at the County Scale: A Case Study of Zhejiang Province, China," Land, MDPI, vol. 13(3), pages 1-25, March.
    7. Xiaohuan Xie & Haifeng Deng & Shengyuan Li & Zhonghua Gou, 2024. "Optimizing Land Use for Carbon Neutrality: Integrating Photovoltaic Development in Lingbao, Henan Province," Land, MDPI, vol. 13(1), pages 1-18, January.
    8. Qiaowen Lin & Lu Zhang & Bingkui Qiu & Yi Zhao & Chao Wei, 2021. "Spatiotemporal Analysis of Land Use Patterns on Carbon Emissions in China," Land, MDPI, vol. 10(2), pages 1-13, February.
    9. Tessa Möller & Annika Ernest Högner & Carl-Friedrich Schleussner & Samuel Bien & Niklas H. Kitzmann & Robin D. Lamboll & Joeri Rogelj & Jonathan F. Donges & Johan Rockström & Nico Wunderling, 2024. "Achieving net zero greenhouse gas emissions critical to limit climate tipping risks," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    10. Lina Liu & Jiansheng Qu & Feng Gao & Tek Narayan Maraseni & Shaojian Wang & Suman Aryal & Zhenhua Zhang & Rong Wu, 2024. "Land Use Carbon Emissions or Sink: Research Characteristics, Hotspots and Future Perspectives," Land, MDPI, vol. 13(3), pages 1-24, February.
    11. Antonio Sánchez-Navarro & Maria del Carmen Salas-Sanjuan & María Arantzazu Blanco-Bernardeau & Juan Antonio Sánchez-Romero & María José Delgado-Iniesta, 2023. "Medium-Term Effect of Organic Amendments on the Chemical Properties of a Soil Used for Vegetable Cultivation with Cereal and Legume Rotation in a Semiarid Climate," Land, MDPI, vol. 12(4), pages 1-17, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jie He & Jun Yang, 2023. "Spatial–Temporal Characteristics and Influencing Factors of Land-Use Carbon Emissions: An Empirical Analysis Based on the GTWR Model," Land, MDPI, vol. 12(8), pages 1-23, July.
    2. Xiaoping Li & Sai Hu & Lifu Jiang & Bing Han & Jie Li & Xuan Wei, 2023. "Spatiotemporal Patterns and the Development Path of Land-Use Carbon Emissions from a Low-Carbon Perspective: A Case Study of Guizhou Province," Land, MDPI, vol. 12(10), pages 1-17, October.
    3. Yun Jiang & Guoming Du & Hao Teng & Jun Wang & Haolin Li, 2023. "Multi-Scenario Land Use Change Simulation and Spatial Response of Ecosystem Service Value in Black Soil Region of Northeast China," Land, MDPI, vol. 12(5), pages 1-21, April.
    4. Zhaoli Du & Xiaoyu Ren & Weijun Zhao & Chenfei Zhang, 2025. "Spatiotemporal Characteristics of Carbon Emissions from Construction Land and Their Decoupling Effects in the Yellow River Basin, China," Land, MDPI, vol. 14(2), pages 1-23, February.
    5. Srijana Shrestha & Khem Narayan Poudyal & Nawraj Bhattarai & Mohan B. Dangi & John J. Boland, 2022. "An Assessment of the Impact of Land Use and Land Cover Change on the Degradation of Ecosystem Service Values in Kathmandu Valley Using Remote Sensing and GIS," Sustainability, MDPI, vol. 14(23), pages 1-18, November.
    6. Anjia Li & Xu Yin & Hui Wei, 2025. "Spatiotemporal Evolution and Driving Factors of the Relationship Between Land Use Carbon Emissions and Ecosystem Service Value in Beijing-Tianjin-Hebei," Land, MDPI, vol. 14(8), pages 1-23, August.
    7. Xinhui Feng & Yan Li & Lu Zhang & Chuyu Xia & Er Yu & Jiayu Yang, 2022. "Carbon Metabolism in Urban “Production–Living–Ecological” Space Based on Ecological Network Analysis," Land, MDPI, vol. 11(9), pages 1-22, August.
    8. Yong Qi & Chi Zhang & Tingting Bai & Dong Xu, 2025. "The impact of industry-favoring land allocation strategy on urban carbon emissions: a city-level empirical study in China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 27(7), pages 15367-15391, July.
    9. Min Wang & Yang Wang & Yingmei Wu & Xiaoli Yue & Mengjiao Wang & Pingping Hu, 2022. "Detecting Differences in the Impact of Construction Land Types on Carbon Emissions: A Case Study of Southwest China," Land, MDPI, vol. 11(5), pages 1-16, May.
    10. Luyi Qiu & Kunying Niu & Wei He & Yaqi Hu, 2023. "Two Contribution Paths of Carbon Neutrality: Terrestrial Ecosystem Carbon Sinks and Anthropogenic Carbon Emission Reduction—A Case of Chongqing, China," Sustainability, MDPI, vol. 15(14), pages 1-17, July.
    11. Nan Feng & Mingyue Yan & Mingtao Yan, 2024. "Spatiotemporal Evolution and Influencing Factors of New-Quality Productivity," Sustainability, MDPI, vol. 16(24), pages 1-20, December.
    12. Huicai Yang & Jingtao Ma & Xinying Jiao & Guofei Shang & Haiming Yan, 2023. "Characteristics and Driving Mechanism of Urban Construction Land Expansion along with Rapid Urbanization and Carbon Neutrality in Beijing, China," Land, MDPI, vol. 12(7), pages 1-17, July.
    13. Caixia Liu & Rui Xu & Kaiji Xu & Yiwen Lin & Yingui Cao, 2023. "Carbon Emission Effects of Land Use in Chaobai River Region of Beijing–Tianjin–Hebei, China," Land, MDPI, vol. 12(6), pages 1-23, June.
    14. Yu Li & Yanjun Zhang & Xiaoyan Li, 2024. "Insight into Carbon Emissions in Economically Developed Regions Based on Land Use Transitions: A Case Study of the Yangtze River Delta, China," Land, MDPI, vol. 13(11), pages 1-21, November.
    15. Yuting Lai & Tingting Fei & Chen Wang & Xiaoying Xu & Xinhan Zhuang & Xiang Que & Yanjiao Zhang & Wenli Yuan & Haohao Yang & Yu Hong, 2025. "Energy Carbon Emission Reduction Based on Spatiotemporal Heterogeneity: A County-Level Empirical Analysis in Guangdong, Fujian, and Zhejiang," Sustainability, MDPI, vol. 17(7), pages 1-21, April.
    16. Furui Xi & Gang Lin & Yanan Zhao & Xiang Li & Zhiyu Chen & Chenglong Cao, 2023. "Land Use Optimization and Carbon Storage Estimation in the Yellow River Basin, China," Sustainability, MDPI, vol. 15(14), pages 1-17, July.
    17. Dinghua Ou & Jiayi Wu & Qingyan Huang & Chang Shu & Tianyi Xie & Chunxin Luo & Meng Zhao & Jiani Zhang & Jianbo Fei, 2025. "Spatiotemporal Continuity and Spatially Heterogeneous Drivers in the Historical Evolution of County-Scale Carbon Emissions from Territorial Function Utilisation in China: Evidence from Qionglai City," Land, MDPI, vol. 14(10), pages 1-36, October.
    18. Suchang Yang & Shi Qiu & Jiawei Cao & Zhenhua Zhang, 2025. "The Influencing Mechanism and Spatial Effect of the Digital Economy on Agricultural Carbon Emissions," Sustainability, MDPI, vol. 17(9), pages 1-26, April.
    19. Mingjie Tian & Zhun Chen & Wei Wang & Taizheng Chen & Haiying Cui, 2022. "Land-Use Carbon Emissions in the Yellow River Basin from 2000 to 2020: Spatio-Temporal Patterns and Driving Mechanisms," IJERPH, MDPI, vol. 19(24), pages 1-16, December.
    20. Hui Wang & Jinzhuo Wu & Wenshu Lin & Zhaoping Luan, 2023. "Carbon Footprint Accounting and Influencing Factors Analysis for Forestry Enterprises in the Key State-Owned Forest Region of the Greater Khingan Range, Northeast China," Sustainability, MDPI, vol. 15(11), pages 1-21, May.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:14:y:2025:i:9:p:1764-:d:1738081. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.