IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v14y2025i4p759-d1626623.html
   My bibliography  Save this article

Spatial and Temporal Analysis of Habitat Quality in the Yellow River Basin Based on Land-Use Transition and Its Driving Forces

Author

Listed:
  • Yibo Xu

    (School of Economics and Management, China University of Geosciences (Beijing), Beijing 100083, China
    Key Laboratory of Coupling Process and Effect of Natural Resources Elements, Beijing 100055, China)

  • Xiaohuang Liu

    (Key Laboratory of Coupling Process and Effect of Natural Resources Elements, Beijing 100055, China
    Integrated Natural Resources Survey Center, China Geological Survey, Beijing 100055, China)

  • Lianrong Zhao

    (School of Economics and Management, China University of Geosciences (Beijing), Beijing 100083, China)

  • Hongyu Li

    (Key Laboratory of Coupling Process and Effect of Natural Resources Elements, Beijing 100055, China
    Integrated Natural Resources Survey Center, China Geological Survey, Beijing 100055, China
    Key Laboratory of Water Management and Water Security for Yellow River Basin, Ministry of Water Resources (Under Construction), Zhengzhou 450003, China)

  • Ping Zhu

    (Key Laboratory of Coupling Process and Effect of Natural Resources Elements, Beijing 100055, China
    Integrated Natural Resources Survey Center, China Geological Survey, Beijing 100055, China)

  • Run Liu

    (Key Laboratory of Coupling Process and Effect of Natural Resources Elements, Beijing 100055, China
    Integrated Natural Resources Survey Center, China Geological Survey, Beijing 100055, China)

  • Chao Wang

    (Key Laboratory of Coupling Process and Effect of Natural Resources Elements, Beijing 100055, China
    Integrated Natural Resources Survey Center, China Geological Survey, Beijing 100055, China)

  • Bo Wang

    (Key Laboratory of Coupling Process and Effect of Natural Resources Elements, Beijing 100055, China
    Xi’an Center of Mineral Resources Survey, China Geological Survey, Xi’an 710100, China)

Abstract

Land-use transition has diverse influences on habitat quality. At present, land-use patterns and habitat quality in the ecologically fragile Yellow River Basin are undergoing significant change. However, the relationship between land-use transition and habitat quality and the driving factors of habitat quality dynamics across the whole basin remain unclear. In this study, we utilized a land-use transition matrix and an InVEST model to analyze the dynamics of land use, habitat quality, and the relationship between the two in the Yellow River Basin from 2005 to 2020. The driving factors of habitat quality dynamics were explored with a spatial econometric model. The results showed the following: (1) The areas of farmland and grassland accounted for more than 70%, but decreased by 14,600 km 2 and 2500 km 2 , respectively. The areas of forest and construction land increased by 1800 km 2 and 16,900 km 2 , respectively. (2) The habitat quality showed a trend of decrease-then-increase. The areas of low value (0–0.2) were the largest, accounting for about 50% of the total area; the regions of relatively high (0.6–0.8) and high value (0.8–1) were small and scattered in the mountainous forest area, accounting for about 10%. (3) The habitat quality was the lowest in the land categorized as transitioning to construction, and highest in unchanged forest and in the land characterized as transitioning to forest. The coupling coordination degree of land-use degree and habitat quality showed a steady upward trend. (4) The growth rate in the value added by secondary industries, GDP per capita, population density, ecological-protection policy score, average annual temperature, and average annual precipitation were the primary factors affecting habitat quality. This study fills the gap in the analysis of the relationship between land-use transition and habitat quality across the whole Yellow River Basin; the work assists in the understanding of the ecological effects of land-use transition in the region and provides suggestions for the development of other densely populated and ecologically fragile areas.

Suggested Citation

  • Yibo Xu & Xiaohuang Liu & Lianrong Zhao & Hongyu Li & Ping Zhu & Run Liu & Chao Wang & Bo Wang, 2025. "Spatial and Temporal Analysis of Habitat Quality in the Yellow River Basin Based on Land-Use Transition and Its Driving Forces," Land, MDPI, vol. 14(4), pages 1-25, April.
  • Handle: RePEc:gam:jlands:v:14:y:2025:i:4:p:759-:d:1626623
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/14/4/759/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/14/4/759/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Liuwen Liao & Enpu Ma & Hualou Long & Xiaojun Peng, 2022. "Land Use Transition and Its Ecosystem Resilience Response in China during 1990–2020," Land, MDPI, vol. 12(1), pages 1-19, December.
    2. Lisu Chen & Qiong Wei & Qiang Fu & Daolun Feng, 2021. "Spatiotemporal Evolution Analysis of Habitat Quality under High-Speed Urbanization: A Case Study of Urban Core Area of China Lin-Gang Free Trade Zone (2002–2019)," Land, MDPI, vol. 10(2), pages 1-21, February.
    3. Basu, Tirthankar & Das, Arijit, 2024. "Urbanization induced changes in land use dynamics and its nexus to ecosystem service values: A spatiotemporal investigation to promote sustainable urban growth," Land Use Policy, Elsevier, vol. 144(C).
    4. Xiangdong Cao & Fuyi Ci, 2023. "Study on the Coupling Development of Industry, City and Population in the Yellow River Basin from the Perspective of Green Economy," Sustainability, MDPI, vol. 15(13), pages 1-13, June.
    5. Yu Li & Yanjun Zhang & Xiaoyan Li, 2024. "Insight into Carbon Emissions in Economically Developed Regions Based on Land Use Transitions: A Case Study of the Yangtze River Delta, China," Land, MDPI, vol. 13(11), pages 1-21, November.
    6. Wang, Chao & Zhang, Xinyi & Ghadimi, Pezhman & Liu, Qian & Lim, Ming K. & Stanley, H. Eugene, 2019. "The impact of regional financial development on economic growth in Beijing–Tianjin–Hebei region: A spatial econometric analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 635-648.
    7. Xiao Lu & Yi Qu & Piling Sun & Wei Yu & Wenlong Peng, 2020. "Green Transition of Cultivated Land Use in the Yellow River Basin: A Perspective of Green Utilization Efficiency Evaluation," Land, MDPI, vol. 9(12), pages 1-22, November.
    8. Meijing Chen & Zhongke Bai & Qingri Wang & Zeyu Shi, 2021. "Habitat Quality Effect and Driving Mechanism of Land Use Transitions: A Case Study of Henan Water Source Area of the Middle Route of the South-to-North Water Transfer Project," Land, MDPI, vol. 10(8), pages 1-20, July.
    9. Alfath Satria Negara Syaban & Seth Appiah-Opoku, 2024. "Unveiling the Complexities of Land Use Transition in Indonesia’s New Capital City IKN Nusantara: A Multidimensional Conflict Analysis," Land, MDPI, vol. 13(5), pages 1-36, April.
    10. Ouyang, Xiao & Tang, Lisha & Wei, Xiao & Li, Yonghui, 2021. "Spatial interaction between urbanization and ecosystem services in Chinese urban agglomerations," Land Use Policy, Elsevier, vol. 109(C).
    11. Cui, Yanfang & Li, Li & Lei, Yalin & Wu, Sanmang, 2024. "The performance and influencing factors of high-quality development of resource-based cities in the Yellow River basin under reducing pollution and carbon emissions constraints," Resources Policy, Elsevier, vol. 88(C).
    12. Tim Newbold & Lawrence N. Hudson & Samantha L. L. Hill & Sara Contu & Igor Lysenko & Rebecca A. Senior & Luca Börger & Dominic J. Bennett & Argyrios Choimes & Ben Collen & Julie Day & Adriana De Palma, 2015. "Global effects of land use on local terrestrial biodiversity," Nature, Nature, vol. 520(7545), pages 45-50, April.
    13. Shi, Linna & Wang, Yongsheng, 2021. "Evolution characteristics and driving factors of negative decoupled rural residential land and resident population in the Yellow River Basin," Land Use Policy, Elsevier, vol. 109(C).
    14. Xu, Xin & Zhang, Daojun & Zhang, Yu & Yao, Shunbo & Zhang, Jinting, 2020. "Evaluating the vegetation restoration potential achievement of ecological projects: A case study of Yan’an, China," Land Use Policy, Elsevier, vol. 90(C).
    15. Chenbo Huang & Xiaojing Cheng & Zhiming Zhang, 2024. "Future Land Use and Habitat Quality Dynamics: Spatio-Temporal Analysis and Simulation in the Taihu Lake Basin," Sustainability, MDPI, vol. 16(17), pages 1-19, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kong, Xuesong & Fu, Mengxue & Zhao, Xiang & Wang, Jing & Jiang, Ping, 2022. "Ecological effects of land-use change on two sides of the Hu Huanyong Line in China," Land Use Policy, Elsevier, vol. 113(C).
    2. Taquan Ma & Rui Liu & Zheng Li & Tongtu Ma, 2023. "Research on the Evolution Characteristics and Dynamic Simulation of Habitat Quality in the Southwest Mountainous Urban Agglomeration from 1990 to 2030," Land, MDPI, vol. 12(8), pages 1-23, July.
    3. Hualou Long & Xiangbin Kong & Shougeng Hu & Yurui Li, 2021. "Land Use Transitions under Rapid Urbanization: A Perspective from Developing China," Land, MDPI, vol. 10(9), pages 1-9, September.
    4. Wenfei Zhang & Leilei Zhao, 2024. "Value Objective, Game Analysis and Approach to Rule of Law for Comprehensive Supervision of Agricultural Natural Resource Assets in China," Sustainability, MDPI, vol. 16(23), pages 1-24, November.
    5. Yuxin Qi & Yuandong Hu, 2024. "Spatiotemporal Variation and Driving Factors Analysis of Habitat Quality: A Case Study in Harbin, China," Land, MDPI, vol. 13(1), pages 1-21, January.
    6. Law, Elizabeth A. & Macchi, Leandro & Baumann, Matthias & Decarre, Julieta & Gavier-Pizarro, Gregorio & Levers, Christian & Mastrangelo, Matías E. & Murray, Francisco & Müller, Daniel & Piquer-Rodrígu, 2021. "Fading opportunities for mitigating agriculture-environment trade-offs in a south American deforestation hotspot," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 262.
    7. Mohamed Fomba & Zinash Delebo Osunde & Souleymane Sidi Traoré & Appollonia Okhimamhe & Janina Kleemann & Christine Fürst, 2024. "Urban Green Spaces in Bamako and Sikasso, Mali: Land Use Changes and Perceptions," Land, MDPI, vol. 13(1), pages 1-20, January.
    8. Shan Chen & Yuanmin Sun & Kunxian Tang & Fei Zhang & Weilun Ding & Ao Wang, 2022. "Distribution Characteristics and Restoration Application of Vegetation in Chengcun Bay Surrounding Areas of Yangjiang City," IJERPH, MDPI, vol. 19(16), pages 1-15, August.
    9. repec:osf:osfxxx:th8j6_v1 is not listed on IDEAS
    10. Cher Chen & GholamReza Zandi Pour & Edwin R. de los Reyes, 2020. "Financial Development and Economic Growth in Asian Countries: A Panel Empirical Investigation," International Journal of Applied Economics, Finance and Accounting, Online Academic Press, vol. 6(2), pages 76-84.
    11. Hao Chen & Luuk Fleskens & Simon W. Moolenaar & Coen J. Ritsema & Fei Wang, 2022. "Stakeholders’ Perceptions towards Land Restoration and Its Impacts on Ecosystem Services: A Case Study in the Chinese Loess Plateau," Land, MDPI, vol. 11(11), pages 1-18, November.
    12. Guangdong Li & Chuanglin Fang & James E. M. Watson & Siao Sun & Wei Qi & Zhenbo Wang & Jianguo Liu, 2024. "Mixed effectiveness of global protected areas in resisting habitat loss," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    13. Sarah R. Weiskopf & Forest Isbell & Maria Isabel Arce-Plata & Moreno Di Marco & Mike Harfoot & Justin Johnson & Susannah B. Lerman & Brian W. Miller & Toni Lyn Morelli & Akira S. Mori & Ensheng Weng &, 2024. "Biodiversity loss reduces global terrestrial carbon storage," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    14. Shuangshuang Liu & Qipeng Liao & Mingzhu Xiao & Dengyue Zhao & Chunbo Huang, 2022. "Spatial and Temporal Variations of Habitat Quality and Its Response of Landscape Dynamic in the Three Gorges Reservoir Area, China," IJERPH, MDPI, vol. 19(6), pages 1-20, March.
    15. Hu Liao & Hu Li & Chen-Song Duan & Xin-Yuan Zhou & Qiu-Ping Luo & Xin-Li An & Yong-Guan Zhu & Jian-Qiang Su, 2022. "Response of soil viral communities to land use changes," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    16. Karlsson, Johan O. & Röös, Elin, 2019. "Resource-efficient use of land and animals—Environmental impacts of food systems based on organic cropping and avoided food-feed competition," Land Use Policy, Elsevier, vol. 85(C), pages 63-72.
    17. Jiamin Ren & Chenrouyu Zheng & Fuyou Guo & Hongbo Zhao & Shuang Ma & Yu Cheng, 2022. "Spatial Differentiation of Digital Rural Development and Influencing Factors in the Yellow River Basin, China," IJERPH, MDPI, vol. 19(23), pages 1-16, December.
    18. Gyanendra Prasad Joshi & Fayadh Alenezi & Gopalakrishnan Thirumoorthy & Ashit Kumar Dutta & Jinsang You, 2021. "Ensemble of Deep Learning-Based Multimodal Remote Sensing Image Classification Model on Unmanned Aerial Vehicle Networks," Mathematics, MDPI, vol. 9(22), pages 1-17, November.
    19. Hanwen Zhang & Yanqing Lang, 2022. "Quantifying and Analyzing the Responses of Habitat Quality to Land Use Change in Guangdong Province, China over the Past 40 Years," Land, MDPI, vol. 11(6), pages 1-23, May.
    20. Mahyudin Ahmad & Siong Hook Law, 2024. "Financial development, institutions, and economic growth nexus: A spatial econometrics analysis using geographical and institutional proximities," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 29(3), pages 2699-2721, July.
    21. Nele Lohrum & Morten Graversgaard & Chris Kjeldsen, 2021. "Historical Transition of a Farming System towards Industrialization: A Danish Agricultural Case Study Comparing Sustainability in the 1840s and 2019," Sustainability, MDPI, vol. 13(22), pages 1-15, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:14:y:2025:i:4:p:759-:d:1626623. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.