IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v13y2024i9p1481-d1477288.html
   My bibliography  Save this article

Evaluating Sugarcane Yield Estimation in Thailand Using Multi-Temporal Sentinel-2 and Landsat Data Together with Machine-Learning Algorithms

Author

Listed:
  • Jaturong Som-ard

    (Department of Geography, Faculty of Humanities and Social Sciences, Mahasarakham University, Maha Sarakham 44150, Thailand
    Earth Observation Technologies for Land and Agricultural Development Research Unit, Faculty of Humanities and Social Sciences, Mahasarakham University, Maha Sarakham 44150, Thailand)

  • Savittri Ratanopad Suwanlee

    (Department of Geography, Faculty of Humanities and Social Sciences, Mahasarakham University, Maha Sarakham 44150, Thailand
    Earth Observation Technologies for Land and Agricultural Development Research Unit, Faculty of Humanities and Social Sciences, Mahasarakham University, Maha Sarakham 44150, Thailand)

  • Dusadee Pinasu

    (Technology and Informatics Institute for Sustainability, National Metal and Materials Technology Center, National Science and Technology Development Agency, Thailand Science Park, Pathum Thani 12120, Thailand)

  • Surasak Keawsomsee

    (Department of Geography, Faculty of Humanities and Social Sciences, Mahasarakham University, Maha Sarakham 44150, Thailand
    Earth Observation Technologies for Land and Agricultural Development Research Unit, Faculty of Humanities and Social Sciences, Mahasarakham University, Maha Sarakham 44150, Thailand)

  • Kemin Kasa

    (Department of Geography, Faculty of Humanities and Social Sciences, Mahasarakham University, Maha Sarakham 44150, Thailand
    Earth Observation Technologies for Land and Agricultural Development Research Unit, Faculty of Humanities and Social Sciences, Mahasarakham University, Maha Sarakham 44150, Thailand)

  • Nattawut Seesanhao

    (Department of Geography, Faculty of Humanities and Social Sciences, Mahasarakham University, Maha Sarakham 44150, Thailand
    Earth Observation Technologies for Land and Agricultural Development Research Unit, Faculty of Humanities and Social Sciences, Mahasarakham University, Maha Sarakham 44150, Thailand)

  • Sarawut Ninsawat

    (Remote Sensing and GIS, School of Engineering and Technology, Asian Institute of Technology, Klong Luang, Pathum Thani 12120, Thailand)

  • Enrico Borgogno-Mondino

    (Department of Agricultural, Forest and Food Sciences, University of Turin, Grugliasco L.go, 10095 Braccini, Italy)

  • Filippo Sarvia

    (Department of Agricultural, Forest and Food Sciences, University of Turin, Grugliasco L.go, 10095 Braccini, Italy
    Food and Agriculture Organization of the United Nations, 00153 Rome, Italy)

Abstract

Updated and accurate crop yield maps play a key role in the agricultural environment. Their application enables the support for sustainable agricultural practices and the formulation of effective strategies to mitigate the impacts of climate change. Farmers can apply the maps to gain an overview of the yield variability, improving farm management practices and optimizing inputs to increase productivity and sustainability such as fertilizers. Earth observation (EO) data make it possible to map crop yield estimations over large areas, although this will remain challenging for specific crops such as sugarcane. Yield data collection is an expensive and time-consuming practice that often limits the number of samples collected. In this study, the sugarcane yield estimation based on a small number of training datasets within smallholder crop systems in the Tha Khan Tho District, Thailand for the year 2022 was assessed. Specifically, multi-temporal satellite datasets from multiple sensors, including Sentinel-2 and Landsat 8/9, were involved. Moreover, in order to generate the sugarcane yield estimation maps, only 75 sampling plots were selected and surveyed to provide training and validation data for several powerful machine-learning algorithms, including multiple linear regression (MLR), stepwise multiple regression (SMR), partial least squares regression (PLS), random forest regression (RFR), and support vector regression (SVR). Among these algorithms, the RFR model demonstrated outstanding performance, yielding an excellent result compared to existing techniques, achieving an R-squared (R 2 ) value of 0.79 and a root mean square error (RMSE) of 3.93 t/ha (per 10 m × 10 m pixel). Furthermore, the mapped yields across the region closely aligned with the official statistical data from the Office of the Cane and Sugar Board (with a range value of 36,000 ton). Finally, the sugarcane yield estimation model was applied to over 2100 sugarcane fields in order to provide an overview of the current state of the yield and total production in the area. In this work, the different yield rates at the field level were highlighted, providing a powerful workflow for mapping sugarcane yields across large regions, supporting sugarcane crop management and facilitating decision-making processes.

Suggested Citation

  • Jaturong Som-ard & Savittri Ratanopad Suwanlee & Dusadee Pinasu & Surasak Keawsomsee & Kemin Kasa & Nattawut Seesanhao & Sarawut Ninsawat & Enrico Borgogno-Mondino & Filippo Sarvia, 2024. "Evaluating Sugarcane Yield Estimation in Thailand Using Multi-Temporal Sentinel-2 and Landsat Data Together with Machine-Learning Algorithms," Land, MDPI, vol. 13(9), pages 1-19, September.
  • Handle: RePEc:gam:jlands:v:13:y:2024:i:9:p:1481-:d:1477288
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/13/9/1481/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/13/9/1481/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hyonho Chun & Sündüz Keleş, 2010. "Sparse partial least squares regression for simultaneous dimension reduction and variable selection," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(1), pages 3-25, January.
    2. Jig Han Jeong & Jonathan P Resop & Nathaniel D Mueller & David H Fleisher & Kyungdahm Yun & Ethan E Butler & Dennis J Timlin & Kyo-Moon Shim & James S Gerber & Vangimalla R Reddy & Soo-Hyung Kim, 2016. "Random Forests for Global and Regional Crop Yield Predictions," PLOS ONE, Public Library of Science, vol. 11(6), pages 1-15, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Javad Seyedmohammadi & Mir Naser Navidi & Ali Zeinadini & Richard W. McDowell, 2024. "Random forest, an efficient smart technique for analyzing the influence of soil properties on pistachio yield," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(1), pages 2615-2636, January.
    2. Qiang Sun & Hongtu Zhu & Yufeng Liu & Joseph G. Ibrahim, 2015. "SPReM: Sparse Projection Regression Model For High-Dimensional Linear Regression," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 289-302, March.
    3. Lee Woojoo & Lee Donghwan & Lee Youngjo & Pawitan Yudi, 2011. "Sparse Canonical Covariance Analysis for High-throughput Data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-24, July.
    4. Yu, Dengdeng & Zhang, Li & Mizera, Ivan & Jiang, Bei & Kong, Linglong, 2019. "Sparse wavelet estimation in quantile regression with multiple functional predictors," Computational Statistics & Data Analysis, Elsevier, vol. 136(C), pages 12-29.
    5. Yagli, Gokhan Mert & Yang, Dazhi & Srinivasan, Dipti, 2019. "Automatic hourly solar forecasting using machine learning models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 487-498.
    6. Dmitry Kobak & Yves Bernaerts & Marissa A. Weis & Federico Scala & Andreas S. Tolias & Philipp Berens, 2021. "Sparse reduced‐rank regression for exploratory visualisation of paired multivariate data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(4), pages 980-1000, August.
    7. Indy Man Kit Ho & Anthony Weldon & Jason Tze Ho Yong & Candy Tze Tim Lam & Jaime Sampaio, 2023. "Using Machine Learning Algorithms to Pool Data from Meta-Analysis for the Prediction of Countermovement Jump Improvement," IJERPH, MDPI, vol. 20(10), pages 1-15, May.
    8. Jasmit Shah & Somnath Datta & Susmita Datta, 2014. "A multi-loss super regression learner (MSRL) with application to survival prediction using proteomics," Computational Statistics, Springer, vol. 29(6), pages 1749-1767, December.
    9. Luis A. Barboza & Julien Emile-Geay & Bo Li & Wan He, 2019. "Efficient Reconstructions of Common Era Climate via Integrated Nested Laplace Approximations," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(3), pages 535-554, September.
    10. Kapetanios, George & Price, Simon & Young, Garry, 2018. "A UK financial conditions index using targeted data reduction: Forecasting and structural identification," Econometrics and Statistics, Elsevier, vol. 7(C), pages 1-17.
    11. R. D. Cook & I. S. Helland & Z. Su, 2013. "Envelopes and partial least squares regression," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(5), pages 851-877, November.
    12. Florian Schierhorn & Max Hofmann & Taras Gagalyuk & Igor Ostapchuk & Daniel Müller, 2021. "Machine learning reveals complex effects of climatic means and weather extremes on wheat yields during different plant developmental stages," Climatic Change, Springer, vol. 169(3), pages 1-19, December.
    13. Christian Gayer & Alessandro Girardi & Andreas Reuter, 2016. "Replacing Judgment by Statistics: Constructing Consumer Confidence Indicators on the basis of Data-driven Techniques. The Case of the Euro Area," Working Papers LuissLab 16125, Dipartimento di Economia e Finanza, LUISS Guido Carli.
    14. Shin, Seung Jun & Artemiou, Andreas, 2017. "Penalized principal logistic regression for sparse sufficient dimension reduction," Computational Statistics & Data Analysis, Elsevier, vol. 111(C), pages 48-58.
    15. Puyu Feng & Bin Wang & De Li Liu & Hongtao Xing & Fei Ji & Ian Macadam & Hongyan Ruan & Qiang Yu, 2018. "Impacts of rainfall extremes on wheat yield in semi-arid cropping systems in eastern Australia," Climatic Change, Springer, vol. 147(3), pages 555-569, April.
    16. Yongshuai Chen & Baosheng Liang, 2025. "Sure Independence Screening for Ultrahigh-Dimensional Additive Model with Multivariate Response," Mathematics, MDPI, vol. 13(10), pages 1-17, May.
    17. Feuerriegel, Stefan & Gordon, Julius, 2019. "News-based forecasts of macroeconomic indicators: A semantic path model for interpretable predictions," European Journal of Operational Research, Elsevier, vol. 272(1), pages 162-175.
    18. Thomas Conlon & John Cotter & Iason Kynigakis, 2021. "Machine Learning and Factor-Based Portfolio Optimization," Papers 2107.13866, arXiv.org.
    19. Li Fan & Shibo Fang & Jinlong Fan & Yan Wang & Linqing Zhan & Yongkun He, 2024. "Rice Yield Estimation Using Machine Learning and Feature Selection in Hilly and Mountainous Chongqing, China," Agriculture, MDPI, vol. 14(9), pages 1-18, September.
    20. Martin Kuradusenge & Eric Hitimana & Damien Hanyurwimfura & Placide Rukundo & Kambombo Mtonga & Angelique Mukasine & Claudette Uwitonze & Jackson Ngabonziza & Angelique Uwamahoro, 2023. "Crop Yield Prediction Using Machine Learning Models: Case of Irish Potato and Maize," Agriculture, MDPI, vol. 13(1), pages 1-19, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:13:y:2024:i:9:p:1481-:d:1477288. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.