IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v13y2024i5p714-d1397703.html
   My bibliography  Save this article

A Two-Layer SD-ANN-CA Model Framework for Multi-Typed Land Use and Land Cover Change Prediction under Constraints: Case Study of Ya’an City Area, Western China

Author

Listed:
  • Jingyao Zhao

    (School of Transportation, Southeast University, Nanjing 211189, China)

  • Xiaofan Zhu

    (College of Civil Aviation, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China)

  • Fan Zhang

    (College of Civil Aviation, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China)

  • Lei Gao

    (College of Civil Aviation, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China)

Abstract

Land use and land cover change (LUCC) prediction of cities in Western China requires higher accuracy in quantitative demand and spatial layout because of complex challenges in balancing relationships between urban constructions and ecological developments. Considering city-level areas and various types of land use and land cover, existing LUCC models without constraint or with only loose demand constraints were impractical in providing evidence of high accuracy and high-resolution predictions in areas facing fierce land competition. In this study, we proposed a two-layer SD-ANN-CA model to simulate and explore the LUCC trend and layout predictions for 2018, 2028, and 2038 in Ya’an City, Western China. The two-layer structure with an upper layer of the SD model and a lower layer of the ANN-CA model, as well as the advantages of all three methods of system dynamics (SD), artificial neural network (ANN), and cellular automata (CA), have allowed us to consider the macro-level demand constraints, meso-level driving factors constraints, and the micro-level spatial constraints into a unified model framework. The simulation results of the year 2018 have shown significant improvement in the accuracy of the ANN-CA model constructed in our earlier work, especially in types of forest land (error-accuracy: 0.08%), grassland (error-accuracy: 0.23%), and construction land (error-accuracy: 0.18%). The layout predictions of all six types of land use in 2028 and 2038 are then carried out to provide visual evidence support, which may improve the efficiency of planning and policy-making processes. Our work may also provide insights into new ways to combine quantitative methods into spatial methods in constructing city-level or even regional-level LUCC models with high resolution.

Suggested Citation

  • Jingyao Zhao & Xiaofan Zhu & Fan Zhang & Lei Gao, 2024. "A Two-Layer SD-ANN-CA Model Framework for Multi-Typed Land Use and Land Cover Change Prediction under Constraints: Case Study of Ya’an City Area, Western China," Land, MDPI, vol. 13(5), pages 1-22, May.
  • Handle: RePEc:gam:jlands:v:13:y:2024:i:5:p:714-:d:1397703
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/13/5/714/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/13/5/714/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mansour, Shawky & Al-Belushi, Mohammed & Al-Awadhi, Talal, 2020. "Monitoring land use and land cover changes in the mountainous cities of Oman using GIS and CA-Markov modelling techniques," Land Use Policy, Elsevier, vol. 91(C).
    2. Cunha, Elias Rodrigues da & Santos, Celso Augusto Guimarães & Silva, Richarde Marques da & Bacani, Vitor Matheus & Pott, Arnildo, 2021. "Future scenarios based on a CA-Markov land use and land cover simulation model for a tropical humid basin in the Cerrado/Atlantic forest ecotone of Brazil," Land Use Policy, Elsevier, vol. 101(C).
    3. Liu, Xiaoping & Ou, Jinpei & Li, Xia & Ai, Bin, 2013. "Combining system dynamics and hybrid particle swarm optimization for land use allocation," Ecological Modelling, Elsevier, vol. 257(C), pages 11-24.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yabo Zhao & Dixiang Xie & Xiwen Zhang & Shifa Ma, 2021. "Integrating Spatial Markov Chains and Geographically Weighted Regression-Based Cellular Automata to Simulate Urban Agglomeration Growth: A Case Study of the Guangdong–Hong Kong–Macao Greater Bay Area," Land, MDPI, vol. 10(6), pages 1-19, June.
    2. Li, Long & Huang, Xianjin & Yang, Hong, 2023. "Optimizing land use patterns to improve the contribution of land use planning to carbon neutrality target," Land Use Policy, Elsevier, vol. 135(C).
    3. Selamawit Haftu Gebresellase & Zhiyong Wu & Huating Xu & Wada Idris Muhammad, 2023. "Scenario-Based LULC Dynamics Projection Using the CA–Markov Model on Upper Awash Basin (UAB), Ethiopia," Sustainability, MDPI, vol. 15(2), pages 1-27, January.
    4. Sucharita Pradhan & Anirban Dhar & Kamlesh Narayan Tiwari & Satiprasad Sahoo, 2023. "Spatiotemporal analysis of land use land cover and future simulation for agricultural sustainability in a sub-tropical region of India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(8), pages 7873-7902, August.
    5. Qihao Wang & Dongya Liu & Feiyao Gao & Xinqi Zheng & Yiqun Shang, 2023. "A Partitioned and Heterogeneous Land-Use Simulation Model by Integrating CA and Markov Model," Land, MDPI, vol. 12(2), pages 1-20, February.
    6. Wenhao Wan & Yongzhong Tian & Jinglian Tian & Chengxi Yuan & Yan Cao & Kangning Liu, 2024. "Research Progress in Spatiotemporal Dynamic Simulation of LUCC," Sustainability, MDPI, vol. 16(18), pages 1-18, September.
    7. Guadalupe Azuara García & Efrén Palacios Rosas & Alfonso García-Ferrer & Pilar Montesinos Barrios, 2017. "Multi-Objective Spatial Optimization: Sustainable Land Use Allocation at Sub-Regional Scale," Sustainability, MDPI, vol. 9(6), pages 1-21, June.
    8. Chenhao Zhu & Jonah Susskind & Mario Giampieri & Hazel Backus O’Neil & Alan M. Berger, 2023. "Optimizing Sustainable Suburban Expansion with Autonomous Mobility through a Parametric Design Framework," Land, MDPI, vol. 12(9), pages 1-31, September.
    9. Yan Zhou & Tao Chen & Jingjing Wang & Xiaolan Xu, 2023. "Analyzing the Factors Driving the Changes of Ecosystem Service Value in the Liangzi Lake Basin—A GeoDetector-Based Application," Sustainability, MDPI, vol. 15(22), pages 1-15, November.
    10. Qing Liu & Dongdong Yang & Lei Cao & Bruce Anderson, 2022. "Assessment and Prediction of Carbon Storage Based on Land Use/Land Cover Dynamics in the Tropics: A Case Study of Hainan Island, China," Land, MDPI, vol. 11(2), pages 1-24, February.
    11. Zhang, Zuo & Li, Jiaming, 2022. "Spatial suitability and multi-scenarios for land use: Simulation and policy insights from the production-living-ecological perspective," Land Use Policy, Elsevier, vol. 119(C).
    12. Abdulaziz I. Almulhim & Simon Elias Bibri & Ayyoob Sharifi & Shakil Ahmad & Khalid Mohammed Almatar, 2022. "Emerging Trends and Knowledge Structures of Urbanization and Environmental Sustainability: A Regional Perspective," Sustainability, MDPI, vol. 14(20), pages 1-23, October.
    13. Yangyang Yuan & Yuchen Yang & Ruijun Wang & Yuning Cheng, 2022. "Predicting Rural Ecological Space Boundaries in the Urban Fringe Area Based on Bayesian Network: A Case Study in Nanjing, China," Land, MDPI, vol. 11(11), pages 1-24, October.
    14. Milad Asadi & Amir Oshnooei-Nooshabadi & Samira-Sadat Saleh & Fattaneh Habibnezhad & Sonia Sarafraz-Asbagh & John Lodewijk Van Genderen, 2022. "Urban Sprawl Simulation Mapping of Urmia (Iran) by Comparison of Cellular Automata–Markov Chain and Artificial Neural Network (ANN) Modeling Approach," Sustainability, MDPI, vol. 14(23), pages 1-16, November.
    15. Changchang Liu & Chuxiong Deng & Zhongwu Li & Yaojun Liu & Shuyuan Wang, 2022. "Optimization of Spatial Pattern of Land Use: Progress, Frontiers, and Prospects," IJERPH, MDPI, vol. 19(10), pages 1-22, May.
    16. Maira Masood & Chunguang He & Shoukat Ali Shah & Syed Aziz Ur Rehman, 2024. "Land Use Change Impacts over the Indus Delta: A Case Study of Sindh Province, Pakistan," Land, MDPI, vol. 13(7), pages 1-25, July.
    17. Changqing Sun & Yulong Bao & Battsengel Vandansambuu & Yuhai Bao, 2022. "Simulation and Prediction of Land Use/Cover Changes Based on CLUE-S and CA-Markov Models: A Case Study of a Typical Pastoral Area in Mongolia," Sustainability, MDPI, vol. 14(23), pages 1-21, November.
    18. Liu, Dongya & Zheng, Xinqi & Zhang, Chunxiao & Wang, Hongbin, 2017. "A new temporal–spatial dynamics method of simulating land-use change," Ecological Modelling, Elsevier, vol. 350(C), pages 1-10.
    19. Shukui Tan & Lu Zhang & Min Zhou & Yanan Li & Siliang Wang & Bing Kuang & Xiang Luo, 2017. "A hybrid mathematical model for urban land-use planning in association with environmental–ecological consideration under uncertainty," Environment and Planning B, , vol. 44(1), pages 54-79, January.
    20. Chang You & Hongjiao Qu & Shidong Zhang & Luo Guo, 2024. "Assessment of Uncertainties in Ecological Risk Based on the Prediction of Land Use Change and Ecosystem Service Evolution," Land, MDPI, vol. 13(4), pages 1-21, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:13:y:2024:i:5:p:714-:d:1397703. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.