IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v13y2024i12p2252-d1550539.html
   My bibliography  Save this article

Spatio-Temporal Change in Urban Carbon Metabolism Based on Ecological Network Analysis: A Case Study in the Beijing–Tianjin–Hebei Urban Agglomeration, China

Author

Listed:
  • Fang Xu

    (School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China)

  • Xiaoyou Guo

    (School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China)

Abstract

Urban carbon emissions significantly contribute to climate change, exacerbating environmental issues such as global warming. Understanding carbon metabolism is vital for identifying key emission sources and implementing targeted mitigation strategies. This study presents an innovative carbon metabolism analysis framework that integrates an ecological network analysis (ENA) with land use dynamics, enriching the theoretical system and providing policy recommendations for sustainable urban development. We investigated carbon metabolism in the Beijing–Tianjin–Hebei Urban Agglomeration (BTHUA) from 2000 to 2020 using land use and statistical data. The ENA method quantified the ecological relationships between land use compartments. Our findings revealed that industrial and transportation land exhibited the highest carbon emission density, while forest land demonstrated the highest carbon sequestration density. Notably, the negative net horizontal carbon flow indicated that land use changes exacerbated the disorder of carbon metabolism. The increasing mutualism index suggested a reduction in the negative impacts of land use changes on carbon metabolism. This study highlights the importance of spatial planning in transforming ecological relationships and provides a comprehensive understanding of carbon metabolism dynamics influenced by land use changes. The insights gained can inform effective mitigation strategies in the BTHUA and similar urban agglomerations, ultimately contributing to sustainable urban development.

Suggested Citation

  • Fang Xu & Xiaoyou Guo, 2024. "Spatio-Temporal Change in Urban Carbon Metabolism Based on Ecological Network Analysis: A Case Study in the Beijing–Tianjin–Hebei Urban Agglomeration, China," Land, MDPI, vol. 13(12), pages 1-24, December.
  • Handle: RePEc:gam:jlands:v:13:y:2024:i:12:p:2252-:d:1550539
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/13/12/2252/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/13/12/2252/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fath, Brian D., 2007. "Network mutualism: Positive community-level relations in ecosystems," Ecological Modelling, Elsevier, vol. 208(1), pages 56-67.
    2. Wang, Chenglong & Liu, Hui & Zhang, Mengtian & Wei, Zongcai, 2018. "The border effect on urban land expansion in China: The case of Beijing-Tianjin-Hebei region," Land Use Policy, Elsevier, vol. 78(C), pages 287-294.
    3. Zhang, Yan & Wu, Qiong & Fath, Brian D., 2018. "Review of spatial analysis of urban carbon metabolism," Ecological Modelling, Elsevier, vol. 371(C), pages 18-24.
    4. Kennedy, Christopher & Steinberger, Julia & Gasson, Barrie & Hansen, Yvonne & Hillman, Timothy & Havránek, Miroslav & Pataki, Diane & Phdungsilp, Aumnad & Ramaswami, Anu & Mendez, Gara Villalba, 2010. "Methodology for inventorying greenhouse gas emissions from global cities," Energy Policy, Elsevier, vol. 38(9), pages 4828-4837, September.
    5. Cui, Xuezhu & Li, Shaoying & Gao, Feng, 2020. "Examining spatial carbon metabolism: Features, future simulation, and land-based mitigation," Ecological Modelling, Elsevier, vol. 438(C).
    6. Chen, Shaoqing & Chen, Bin, 2015. "Urban energy consumption: Different insights from energy flow analysis, input–output analysis and ecological network analysis," Applied Energy, Elsevier, vol. 138(C), pages 99-107.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Linlin Xia & Jianfeng Wei & Ruwei Wang & Lei Chen & Yan Zhang & Zhifeng Yang, 2022. "Exploring Potential Ways to Reduce the Carbon Emission Gap in an Urban Metabolic System: A Network Perspective," IJERPH, MDPI, vol. 19(10), pages 1-23, May.
    2. Borrett, Stuart R. & Sheble, Laura & Moody, James & Anway, Evan C., 2018. "Bibliometric review of ecological network analysis: 2010–2016," Ecological Modelling, Elsevier, vol. 382(C), pages 63-82.
    3. Duan, Cuncun & Chen, Bin & Feng, Kuishuang & Liu, Zhu & Hayat, Tasawar & Alsaedi, Ahmed & Ahmad, Bashir, 2018. "Interregional carbon flows of China," Applied Energy, Elsevier, vol. 227(C), pages 342-352.
    4. Changlong Sun & Yongli Zhang & Wenwen Ma & Rong Wu & Shaojian Wang, 2022. "The Impacts of Urban Form on Carbon Emissions: A Comprehensive Review," Land, MDPI, vol. 11(9), pages 1-20, August.
    5. Xinhui Feng & Yan Li & Lu Zhang & Chuyu Xia & Er Yu & Jiayu Yang, 2022. "Carbon Metabolism in Urban “Production–Living–Ecological” Space Based on Ecological Network Analysis," Land, MDPI, vol. 11(9), pages 1-22, August.
    6. Zhu, Xueting & Mu, Xianzhong & Hu, Guangwen, 2019. "Ecological network analysis of urban energy metabolic system—A case study of Beijing," Ecological Modelling, Elsevier, vol. 404(C), pages 36-45.
    7. Duan, Cuncun & Chen, Bin, 2017. "Energy–water nexus of international energy trade of China," Applied Energy, Elsevier, vol. 194(C), pages 725-734.
    8. Bai, Hongtao & Feng, Xiangyu & Hou, Huimin & He, Gang & Dong, Yan & Xu, He, 2018. "Mapping inter-industrial CO2 flows within China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 400-408.
    9. Chuang Tu & Xianzhong Mu & Yufeng Wu & Yifan Gu & Guangwen Hu, 2022. "Heterogenous impacts of components in urban energy metabolism: evidences from gravity model," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(8), pages 10089-10117, August.
    10. Zhang, Pengyan & Yang, Dan & Qin, Mingzhou & Jing, Wenlong, 2020. "Spatial heterogeneity analysis and driving forces exploring of built-up land development intensity in Chinese prefecture-level cities and implications for future Urban Land intensive use," Land Use Policy, Elsevier, vol. 99(C).
    11. Dai, Jiangyu & Wu, Shiqiang & Han, Guoyi & Weinberg, Josh & Xie, Xinghua & Wu, Xiufeng & Song, Xingqiang & Jia, Benyou & Xue, Wanyun & Yang, Qianqian, 2018. "Water-energy nexus: A review of methods and tools for macro-assessment," Applied Energy, Elsevier, vol. 210(C), pages 393-408.
    12. Aliyu, Murtala Bello & Mohd, Mohd Hafiz, 2021. "The interplay between mutualism, competition and dispersal promotes species coexistence in a multiple interactions type system," Ecological Modelling, Elsevier, vol. 452(C).
    13. Su, Yongxian & Chen, Xiuzhi & Li, Yong & Liao, Jishan & Ye, Yuyao & Zhang, Hongou & Huang, Ningsheng & Kuang, Yaoqiu, 2014. "China׳s 19-year city-level carbon emissions of energy consumptions, driving forces and regionalized mitigation guidelines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 231-243.
    14. Chen, Shaoqing & Chen, Bin, 2017. "Coupling of carbon and energy flows in cities: A meta-analysis and nexus modelling," Applied Energy, Elsevier, vol. 194(C), pages 774-783.
    15. Sun, Xudong & Li, Jiashuo & Qiao, Han & Zhang, Bo, 2017. "Energy implications of China's regional development: New insights from multi-regional input-output analysis," Applied Energy, Elsevier, vol. 196(C), pages 118-131.
    16. Yi Xiao & Yuantao Liao & Zhe Li & Zhuojun Li & Shaojian Wang, 2023. "Impacts of Land Urbanization on CO 2 Emissions: Policy Implications Based on Developmental Stages," Land, MDPI, vol. 12(10), pages 1-15, October.
    17. Yang, Jin & Chen, Bin, 2016. "Energy–water nexus of wind power generation systems," Applied Energy, Elsevier, vol. 169(C), pages 1-13.
    18. Pere Ariza-Montobbio & Susana Herrero Olarte, 2021. "Socio-metabolic profiles of electricity consumption along the rural–urban continuum of Ecuador: Whose energy sovereignty?," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(5), pages 7961-7995, May.
    19. Liu, Lirong & Huang, Guohe & Baetz, Brian & Huang, Charley Z. & Zhang, Kaiqiang, 2019. "Integrated GHG emissions and emission relationships analysis through a disaggregated ecologically-extended input-output model; A case study for Saskatchewan, Canada," Renewable and Sustainable Energy Reviews, Elsevier, vol. 106(C), pages 97-109.
    20. Kailun Fang & Suzana Ariff Azizan & Yifei Wu, 2023. "Low-Carbon Community Regeneration in China: A Case Study in Dadong," Sustainability, MDPI, vol. 15(5), pages 1-15, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:13:y:2024:i:12:p:2252-:d:1550539. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.