IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v12y2023i7p1342-d1186831.html
   My bibliography  Save this article

Coordinated Development Path of Cultivated Land Utilization in Henan Section of the Yellow River Basin

Author

Listed:
  • Yaohan Cheng

    (College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, China)

  • Chengxiu Li

    (College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, China
    Henan Engineering Research Center of Land Consolidation and Ecological Restoration, Zhengzhou 450046, China)

  • Shuting He

    (College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, China)

  • Ling Li

    (College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, China
    Henan Engineering Research Center of Land Consolidation and Ecological Restoration, Zhengzhou 450046, China)

  • Liangyun Dong

    (College of Geospatial and Information Sciences, China University of Geosciences, Wuhan 430074, China)

  • Xiuli Wang

    (College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, China
    Henan Engineering Research Center of Land Consolidation and Ecological Restoration, Zhengzhou 450046, China)

Abstract

Rational differentiated utilization of cultivated land can effectively coordinate the contradiction between ecological protection, cultivated land utilization, and urban development. Therefore, this article adopts the southern section of the Yellow River Basin as an example, starting with vulnerability and resilience and then formulating an index system for evaluating farmland ecological vulnerability and farmland resilience. Moreover, this article combines Future Land-Use Simulation–Urban Growth Boundaries (FLUS–UGBs) to conduct urban development boundary simulations, which take the urban development boundary as restrictions and comprehensive division and determine the differentiated utilization zoning strategies for cultivated land to achieve coordinated development between ecological protection, cultivated land use, and urban development. The following results are presented: (1) The ecological vulnerability of the research area mainly involves low-to-medium vulnerability; the western and middle sections of the research area demonstrate high and low ecological vulnerability, respectively. (2) Areas with high resilience of cultivated land are mainly located in the mid-eastern part of the research area, and those with low resilience mainly involve the western mountains. (3) The four-quadrant method, the PLUS model, and the FLUS-UGB module are employed to determine differentiated usage zones for cultivated land to achieve rational allocation and effective use of resources.

Suggested Citation

  • Yaohan Cheng & Chengxiu Li & Shuting He & Ling Li & Liangyun Dong & Xiuli Wang, 2023. "Coordinated Development Path of Cultivated Land Utilization in Henan Section of the Yellow River Basin," Land, MDPI, vol. 12(7), pages 1-24, July.
  • Handle: RePEc:gam:jlands:v:12:y:2023:i:7:p:1342-:d:1186831
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/12/7/1342/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/12/7/1342/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhang, Feng & Liu, Xingpeng & Zhang, Jiquan & Wu, Rina & Ma, Qiyun & Chen, Yanan, 2017. "Ecological vulnerability assessment based on multi-sources data and SD model in Yinma River Basin, China," Ecological Modelling, Elsevier, vol. 349(C), pages 41-50.
    2. Zhengxin Ji & Hejie Wei & Dong Xue & Mengxue Liu & Enxiang Cai & Weiqiang Chen & Xinwei Feng & Jiwei Li & Jie Lu & Yulong Guo, 2021. "Trade-Off and Projecting Effects of Land Use Change on Ecosystem Services under Different Policies Scenarios: A Case Study in Central China," IJERPH, MDPI, vol. 18(7), pages 1-23, March.
    3. Yongzhong Tan & Hang Chen & Kuan Lian & Zhenning Yu, 2020. "Comprehensive Evaluation of Cultivated Land Quality at County Scale: A Case Study of Shengzhou, Zhejiang Province, China," IJERPH, MDPI, vol. 17(4), pages 1-15, February.
    4. Jiang, Guanghui & Wang, Mingzhu & Qu, Yanbo & Zhou, Dingyang & Ma, Wenqiu, 2020. "Towards cultivated land multifunction assessment in China: Applying the “influencing factors-functions-products-demands” integrated framework," Land Use Policy, Elsevier, vol. 99(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chengxiu Li & Xiuli Wang & Zhengxin Ji & Ling Li & Xiaoke Guan, 2022. "Optimizing the Use of Cultivated Land in China’s Main Grain-Producing Areas from the Dual Perspective of Ecological Security and Leading-Function Zoning," IJERPH, MDPI, vol. 19(20), pages 1-20, October.
    2. Chengqiang Li & Junxiao Wang & Liang Ge & Yujie Zhou & Shenglu Zhou, 2022. "Optimization of Sample Construction Based on NDVI for Cultivated Land Quality Prediction," IJERPH, MDPI, vol. 19(13), pages 1-17, June.
    3. Su, Jia & Huang, Guangqiu, 2018. "Simulation and analysis of ecosystem vulnerability with cascading spread caused by dust migration based on object function GeoPetri net," Ecological Modelling, Elsevier, vol. 379(C), pages 54-72.
    4. Tianyue Ma & Jing Li & Shuang Bai & Fangzhe Chang & Zhai Jiang & Xingguang Yan & Jiahao Shao, 2022. "Optimization and Construction of Ecological Security Patterns Based on Natural and Cultivated Land Disturbance," Sustainability, MDPI, vol. 14(24), pages 1-19, December.
    5. Li, Xiaoliang & Wu, Kening & Yang, Qijun & Hao, Shiheng & Feng, Zhe & Ma, Jinliang, 2023. "Quantitative assessment of cultivated land use intensity in Heilongjiang Province, China, 2001–2015," Land Use Policy, Elsevier, vol. 125(C).
    6. Xinyi Li & Xiong Wang & Xiaoqing Song, 2021. "Impacts of Agricultural Capitalization on Regional Paddy Field Change: A Production-Factor Substitution Perspective," IJERPH, MDPI, vol. 18(4), pages 1-18, February.
    7. Tan, Kun & Zhao, Xiaoqing & Pu, Junwei & Li, Sinan & Li, Yuhao & Miao, Peipei & Wang, Qian, 2021. "Zoning regulation and development model for water and land resources in the Karst Mountainous Region of Southwest China," Land Use Policy, Elsevier, vol. 109(C).
    8. Mingxin Wen & Ting Zhang & Long Li & Longqian Chen & Sai Hu & Jia Wang & Weiqiang Liu & Yu Zhang & Lina Yuan, 2021. "Assessment of Land Ecological Security and Analysis of Influencing Factors in Chaohu Lake Basin, China from 1998–2018," Sustainability, MDPI, vol. 13(1), pages 1-28, January.
    9. Dang, Yuxuan & Zhao, Zhenting & Kong, Xiangbin & Lei, Ming & Liao, Yubo & Xie, Zhen & Song, Wei, 2023. "Discerning the process of cultivated land governance transition in China since the reform and opening-up-- Based on the multiple streams framework," Land Use Policy, Elsevier, vol. 133(C).
    10. Qin Liu & Tiange Shi, 2019. "Spatiotemporal Differentiation and the Factors of Ecological Vulnerability in the Toutun River Basin Based on Remote Sensing Data," Sustainability, MDPI, vol. 11(15), pages 1-19, August.
    11. Zhiyuan Zhu & Zhenzhong Dai & Shilin Li & Yongzhong Feng, 2022. "Spatiotemporal Evolution of Non-Grain Production of Cultivated Land and Its Underlying Factors in China," IJERPH, MDPI, vol. 19(13), pages 1-15, July.
    12. Hejie Wei & Yingying Gao & Qing Han & Ling Li & Xiaobin Dong & Mengxue Liu & Qingxiang Meng, 2022. "Quality Evaluation and Obstacle Identification of Human Settlements in the Qinghai–Tibet Plateau Based on Multi-Source Data," Land, MDPI, vol. 11(9), pages 1-21, September.
    13. Chunsheng Wu & Gaohuan Liu & Chong Huang & Qingsheng Liu & Xudong Guan, 2018. "Ecological Vulnerability Assessment Based on Fuzzy Analytical Method and Analytic Hierarchy Process in Yellow River Delta," IJERPH, MDPI, vol. 15(5), pages 1-14, April.
    14. Jing Shi & Peiji Shi & Ziyang Wang & Lirong Wang & Yali Li, 2023. "Multi-Scenario Simulation and Driving Force Analysis of Ecosystem Service Value in Arid Areas Based on PLUS Model: A Case Study of Jiuquan City, China," Land, MDPI, vol. 12(5), pages 1-21, April.
    15. Mei Lu & Xiaohe Gu & Qian Sun & Xu Li & Tianen Chen & Yuchun Pan, 2022. "Production Capacity Evaluation of Farmland Using Long Time Series of Remote Sensing Images," Agriculture, MDPI, vol. 12(10), pages 1-16, October.
    16. Hanlong Gu & Chongyang Huan & Fengjiao Yang, 2023. "Spatiotemporal Dynamics of Ecological Vulnerability and Its Influencing Factors in Shenyang City of China: Based on SRP Model," IJERPH, MDPI, vol. 20(2), pages 1-26, January.
    17. Weiguo Fan & Wei Yao & Kehan Chen, 2023. "Integrating Energy Systems Language and Emergy Approach to Simulate and Analyze the Energy Flow Process of Land Transfer," Land, MDPI, vol. 12(5), pages 1-24, May.
    18. Rui Zhao & Kening Wu & Xiaoliang Li & Nan Gao & Mingming Yu, 2021. "Discussion on the Unified Survey and Evaluation of Cultivated Land Quality at County Scale for China’s 3rd National Land Survey: A Case Study of Wen County, Henan Province," Sustainability, MDPI, vol. 13(5), pages 1-26, February.
    19. Xinhai Lu & Yanwei Zhang & Handong Tang, 2021. "Modeling and Simulation of Dissemination of Cultivated Land Protection Policies in China," Land, MDPI, vol. 10(2), pages 1-21, February.
    20. Jia Gao & Yaohui Zhu & Rongrong Zhao & Hongjun Sui, 2022. "The Use of Cultivated Land for Multiple Functions in Major Grain-Producing Areas in Northeast China: Spatial-Temporal Pattern and Driving Forces," Land, MDPI, vol. 11(9), pages 1-19, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:12:y:2023:i:7:p:1342-:d:1186831. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.