IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v12y2023i5p1108-d1152927.html
   My bibliography  Save this article

Responses of Vegetation Phenology to Urbanisation and Natural Factors along an Urban-Rural Gradient: A Case Study of an Urban Agglomeration on the Northern Slope of the Tianshan Mountains

Author

Listed:
  • Gulbakram Ahmed

    (Department of Geography and Tourism, Xinjiang Normal University, Urumqi 830054, China
    Xinjiang Key Laboratory of Lake Environment and Resources in Arid Zone, Urumqi 830054, China
    These authors contributed equally to this work.)

  • Mei Zan

    (Department of Geography and Tourism, Xinjiang Normal University, Urumqi 830054, China
    Xinjiang Key Laboratory of Lake Environment and Resources in Arid Zone, Urumqi 830054, China
    These authors contributed equally to this work.)

  • Pariha Helili

    (Department of Geography and Tourism, Xinjiang Normal University, Urumqi 830054, China
    Xinjiang Key Laboratory of Lake Environment and Resources in Arid Zone, Urumqi 830054, China)

  • Alimujiang Kasimu

    (Department of Geography and Tourism, Xinjiang Normal University, Urumqi 830054, China
    Xinjiang Key Laboratory of Lake Environment and Resources in Arid Zone, Urumqi 830054, China)

Abstract

Understanding the responses of vegetation phenology to natural and human disturbances is essential for better understanding ecosystems. In this study, Moderate Resolution Imaging Spectroradiometer data and products were used together with other relevant data to analyse vegetation phenological responses to urbanisation and natural factors in the major urban agglomerations of the Urumqi-Changji, Shihezi-Manasi, and Wusu-Kuidun-Dushanzi regions on the Urban Agglomeration on the Northern Slope of the Tianshan Mountains (UANSTM). Vegetation phenology distributed along an urban-rural gradient showed distinct variability, with start of growing season (SOS), end of growing season (EOS), and growing season length (GSL) occurring earlier, later, and longer, respectively, in urban areas than those in suburban and rural areas. In the Urumqi-Changji region, the earliest SOS, the later EOS, and the longest GSL occurred. Surface urban heat island intensity (SUHII) was most pronounced in the Urumqi-Changji region, with a heat island intensity of 1.77–3.34 °C. Vegetation phenology was influenced by both urbanisation and natural factors, whose contributions were 44.2% to EOS and 61.8% to SOS, respectively. The results of this study emphasise the importance of quantifying the vegetation phenological responses to human disturbances, including climate change, along the urban-rural gradient on the UANSTM.

Suggested Citation

  • Gulbakram Ahmed & Mei Zan & Pariha Helili & Alimujiang Kasimu, 2023. "Responses of Vegetation Phenology to Urbanisation and Natural Factors along an Urban-Rural Gradient: A Case Study of an Urban Agglomeration on the Northern Slope of the Tianshan Mountains," Land, MDPI, vol. 12(5), pages 1-18, May.
  • Handle: RePEc:gam:jlands:v:12:y:2023:i:5:p:1108-:d:1152927
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/12/5/1108/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/12/5/1108/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Maomao Zhang & Abdulla-Al Kafy & Bing Ren & Yanwei Zhang & Shukui Tan & Jianxing Li, 2022. "Application of the Optimal Parameter Geographic Detector Model in the Identification of Influencing Factors of Ecological Quality in Guangzhou, China," Land, MDPI, vol. 11(8), pages 1-20, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhaoxue Gai & Ying Xu & Guoming Du, 2023. "Spatio-Temporal Differentiation and Driving Factors of Carbon Storage in Cultivated Land-Use Transition," Sustainability, MDPI, vol. 15(5), pages 1-16, February.
    2. Wen Chen & Jinjie Wang & Jianli Ding & Xiangyu Ge & Lijing Han & Shaofeng Qin, 2023. "Detecting Long-Term Series Eco-Environmental Quality Changes and Driving Factors Using the Remote Sensing Ecological Index with Salinity Adaptability (RSEI SI ): A Case Study in the Tarim River Basin,," Land, MDPI, vol. 12(7), pages 1-23, June.
    3. Yunlin He & Yanhua Mo & Jiangming Ma, 2022. "Spatio-Temporal Evolution and Influence Mechanism of Habitat Quality in Guilin City, China," IJERPH, MDPI, vol. 20(1), pages 1-15, December.
    4. Jinlong Zhang & Yuan Qi & Rui Yang & Xiaofang Ma & Juan Zhang & Wanqiang Qi & Qianhong Guo & Hongwei Wang, 2023. "Impacts of Climate Change and Land Use/Cover Change on the Net Primary Productivity of Vegetation in the Qinghai Lake Basin," IJERPH, MDPI, vol. 20(3), pages 1-16, January.
    5. Shanshan Wang & Qiting Zuo & Kefa Zhou & Jinlin Wang & Wei Wang, 2023. "Predictions of Land Use/Land Cover Change and Landscape Pattern Analysis in the Lower Reaches of the Tarim River, China," Land, MDPI, vol. 12(5), pages 1-17, May.
    6. Qin Wang & Qin Ju & Yueyang Wang & Quanxi Shao & Rongrong Zhang & Yanli Liu & Zhenchun Hao, 2022. "Vegetation Changing Patterns and Its Sensitivity to Climate Variability across Seven Major Watersheds in China," IJERPH, MDPI, vol. 19(21), pages 1-19, October.
    7. Bo Liu & Wei Song & Zhan Meng & Xinwei Liu, 2023. "Review of Land Use Change Detection—A Method Combining Machine Learning and Bibliometric Analysis," Land, MDPI, vol. 12(5), pages 1-26, May.
    8. Yating Zhao & Chunming Hu & Xi Dong & Jun Li, 2023. "NDVI Characteristics and Influencing Factors of Typical Ecosystems in the Semi-Arid Region of Northern China: A Case Study of the Hulunbuir Grassland," Land, MDPI, vol. 12(3), pages 1-21, March.
    9. Lu Zhang & Xuehan Lin & Bingkui Qiu & Maomao Zhang & Qingsong He, 2022. "The Industrial Sprawl in China from 2010 to 2019: A Multi-Level Spatial Analysis Based on Urban Scaling Law," IJERPH, MDPI, vol. 19(23), pages 1-14, December.
    10. Yazhou Zhao & Shengyu Li & Dazhi Yang & Jiaqiang Lei & Jinglong Fan, 2023. "Spatiotemporal Changes and Driving Force Analysis of Land Sensitivity to Desertification in Xinjiang Based on GEE," Land, MDPI, vol. 12(4), pages 1-20, April.
    11. Enjun Gong & Fangxin Shi & Zhihui Wang & Qingfeng Hu & Jing Zhang & Hongxin Hai, 2022. "Evaluating Environmental Quality and Its Driving Force in Northeastern China Using the Remote Sensing Ecological Index," Sustainability, MDPI, vol. 14(23), pages 1-18, December.
    12. Chaoran Gao & Jinxin Wang & Manman Wang & Yan Zhang, 2023. "Simulating Urban Agglomeration Expansion in Henan Province, China: An Analysis of Driving Mechanisms Using the FLUS Model with Considerations for Urban Interactions and Ecological Constraints," Land, MDPI, vol. 12(6), pages 1-23, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:12:y:2023:i:5:p:1108-:d:1152927. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.