IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v11y2022i9p1489-d907277.html
   My bibliography  Save this article

Effects of Topographic Factors on Cultivated-Land Ridge Orientation in the Black Soil Region of Songnen Plain

Author

Listed:
  • Guoming Du

    (School of Public Administration and Law, Northeast Agricultural University, Harbin 150030, China)

  • Tongbing Guo

    (School of Public Administration and Law, Northeast Agricultural University, Harbin 150030, China)

  • Chen Ma

    (School of Public Administration and Law, Northeast Agricultural University, Harbin 150030, China)

Abstract

Topographic factors are essential to the spatial distribution of ridge orientation, yet the literature shows limited exploration of the mechanisms underlying the effects of terrain on cultivated-land ridge orientation in a black soil region. To better understand this subject, interpretation, statistical analyses and field verification were carried out in Songnen Plain, a typical Mollisol area. The results revealed that inclined-ridge cultivation was the most common farming method in the study area. When the slope gradient of cultivated land was greater than 13°, the influence of slope on ridge orientation was obvious, and the residual ridge angle increased with the increase in slope. There was a strongly significant negative correlation between the residual ridge angle and the azimuth angle, and the proportion curves of all ridge orientations with respect to different slope aspects were axisymmetric with respect to azimuth angles of 0°–180°. The relationship among indices such as slope gradient, slope aspect and ridge orientation could be modeled using a Poly2D function. This study indicates that topographic factors are the dominant factor in ridge-orientation selection, and provides a scientific basis for block-scale cultivated-land protection and utilization in black soil region; however, the scientific configuration of ridge orientation requires further research.

Suggested Citation

  • Guoming Du & Tongbing Guo & Chen Ma, 2022. "Effects of Topographic Factors on Cultivated-Land Ridge Orientation in the Black Soil Region of Songnen Plain," Land, MDPI, vol. 11(9), pages 1-13, September.
  • Handle: RePEc:gam:jlands:v:11:y:2022:i:9:p:1489-:d:907277
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/11/9/1489/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/11/9/1489/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Jilei & Shi, Xiangxue & Li, Zizhong & Zhang, Yan & Liu, Yanqing & Peng, Yuxing, 2021. "Responses of runoff and soil erosion to planting pattern, row direction, and straw mulching on sloped farmland in the corn belt of northeast China," Agricultural Water Management, Elsevier, vol. 253(C).
    2. Jiang, Rui & Li, Xiao & Zhu, Wei & Wang, Kun & Guo, Sheng & Misselbrook, Tom & Hatano, Ryusuke, 2018. "Effects of the ridge mulched system on soil water and inorganic nitrogen distribution in the Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 203(C), pages 277-288.
    3. Bennie, Jonathan & Huntley, Brian & Wiltshire, Andrew & Hill, Mark O. & Baxter, Robert, 2008. "Slope, aspect and climate: Spatially explicit and implicit models of topographic microclimate in chalk grassland," Ecological Modelling, Elsevier, vol. 216(1), pages 47-59.
    4. Snežana Jakšić & Jordana Ninkov & Stanko Milić & Jovica Vasin & Milorad Živanov & Darko Jakšić & Vedrana Komlen, 2021. "Influence of Slope Gradient and Aspect on Soil Organic Carbon Content in the Region of Niš, Serbia," Sustainability, MDPI, vol. 13(15), pages 1-17, July.
    5. Ren, Baizhao & Dong, Shuting & Liu, Peng & Zhao, Bin & Zhang, Jiwang, 2016. "Ridge tillage improves plant growth and grain yield of waterlogged summer maize," Agricultural Water Management, Elsevier, vol. 177(C), pages 392-399.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Song, Zengzhen & Peng, Yuxing & Li, Zizhong & Zhang, Shuai & Liu, Xiaotong & Tan, Senwen, 2022. "Two irrigation events can achieve relatively high, stable corn yield and water productivity in aeolian sandy soil of northeast China," Agricultural Water Management, Elsevier, vol. 260(C).
    2. Zheng, Jing & Fan, Junliang & Zhou, Minghua & Zhang, Fucang & Liao, Zhenqi & Lai, Zhenlin & Yan, Shicheng & Guo, Jinjin & Li, Zhijun & Xiang, Youzhen, 2022. "Ridge-furrow plastic film mulching enhances grain yield and yield stability of rainfed maize by improving resources capture and use efficiency in a semi-humid drought-prone region," Agricultural Water Management, Elsevier, vol. 269(C).
    3. Robert B. Srygley & Jacob I. Dixon & Patrick D. Lorch, 2023. "Microclimate Refugia: Comparing Modeled to Empirical Near-Surface Temperatures on Rangeland," Geographies, MDPI, vol. 3(2), pages 1-15, May.
    4. Chenying Li & Tiantian Zhang & Xi Wang & Zefeng Lian, 2022. "Site Selection of Urban Parks Based on Fuzzy-Analytic Hierarchy Process (F-AHP): A Case Study of Nanjing, China," IJERPH, MDPI, vol. 19(20), pages 1-27, October.
    5. Deniz Arca & Mercan Hacısalihoğlu & Ş. Hakan Kutoğlu, 2020. "Producing forest fire susceptibility map via multi-criteria decision analysis and frequency ratio methods," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(1), pages 73-89, October.
    6. Xing Wang & Hailong Sun & Changming Tan & Xiaowen Wang & Min Xia, 2021. "Effects of Film Mulching on Plant Growth and Nutrients in Artificial Soil: A Case Study on High Altitude Slopes," Sustainability, MDPI, vol. 13(19), pages 1-15, October.
    7. Huang, Chao & Zhang, Weiqiang & Wang, Hui & Gao, Yang & Ma, Shoutian & Qin, Anzhen & Liu, Zugui & Zhao, Ben & Ning, Dongfeng & Zheng, Hongjian & Liu, Zhandong, 2022. "Effects of waterlogging at different stages on growth and ear quality of waxy maize," Agricultural Water Management, Elsevier, vol. 266(C).
    8. Barton, Madeleine & Parry, Hazel & Ward, Samantha & Hoffmann, Ary A. & Umina, Paul A. & van Helden, Maarten & Macfadyen, Sarina, 2021. "Forecasting impacts of biological control under future climates: mechanistic modelling of an aphid pest and a parasitic wasp," Ecological Modelling, Elsevier, vol. 457(C).
    9. Xuemei Lan & Shouxi Chai & Jeffrey A. Coulter & Hongbo Cheng & Lei Chang & Caixia Huang & Rui Li & Yuwei Chai & Yawei Li & Jiantao Ma & Li Li, 2020. "Maize Straw Strip Mulching as a Replacement for Plastic Film Mulching in Maize Production in a Semiarid Region," Sustainability, MDPI, vol. 12(15), pages 1-26, August.
    10. Yue Zhang & Wenxiong Jia & Le Yang & Guofeng Zhu & Xin Lan & Huifang Luo & Zhijie Yu, 2023. "Change Characteristics of Soil Organic Carbon and Soil Available Nutrients and Their Relationship in the Subalpine Shrub Zone of Qilian Mountains in China," Sustainability, MDPI, vol. 15(17), pages 1-17, August.
    11. Amin, M.G. Mostofa & Mahbub, S.M. Mubtasim & Hasan, Md. Moudud & Pervin, Wafa & Sharmin, Jinat & Hossain, Md. Delwar, 2023. "Plant–water relations in subtropical maize fields under mulching and organic fertilization," Agricultural Water Management, Elsevier, vol. 286(C).
    12. Zhang, Wenchao & Zhu, Jianqiang & Zhou, Xinguo & Li, Fahu, 2018. "Effects of shallow groundwater table and fertilization level on soil physico-chemical properties, enzyme activities, and winter wheat yield," Agricultural Water Management, Elsevier, vol. 208(C), pages 307-317.
    13. Maclean, Ilya M.D. & Klinges, David H., 2021. "Microclimc: A mechanistic model of above, below and within-canopy microclimate," Ecological Modelling, Elsevier, vol. 451(C).
    14. Wang, Naijiang & Ding, Dianyuan & Malone, Robert W. & Chen, Haixin & Wei, Yongsheng & Zhang, Tibin & Luo, Xiaoqi & Li, Cheng & Chu, Xiaosheng & Feng, Hao, 2020. "When does plastic-film mulching yield more for dryland maize in the Loess Plateau of China? A meta-analysis," Agricultural Water Management, Elsevier, vol. 240(C).
    15. Marjaneh Mousazade & Gholamabbas Ghanbarian & Hamid Reza Pourghasemi & Roja Safaeian & Artemi Cerdà, 2019. "Maxent Data Mining Technique and Its Comparison with a Bivariate Statistical Model for Predicting the Potential Distribution of Astragalus Fasciculifolius Boiss. in Fars, Iran," Sustainability, MDPI, vol. 11(12), pages 1-23, June.
    16. Xurun Li & Zhao Li & Weizhang Fu & Fadong Li, 2024. "The Influence of Shallow Groundwater on the Physicochemical Properties of Field Soil, Crop Yield, and Groundwater," Agriculture, MDPI, vol. 14(3), pages 1-22, February.
    17. Huang, Chao & Gao, Yang & Qin, Anzhen & Liu, Zugui & Zhao, Ben & Ning, Dongfeng & Ma, Shoutian & Duan, Aiwang & Liu, Zhandong, 2022. "Effects of waterlogging at different stages and durations on maize growth and grain yields," Agricultural Water Management, Elsevier, vol. 261(C).
    18. Duan, Chenxiao & Chen, Jifei & Li, Jiabei & Su, Shunshun & Lei, Qi & Feng, Hao & Wu, Shufang & Zhang, Tibin & Siddique, Kadambot H.M. & Zou, Yufeng, 2022. "Biomaterial amendments combined with ridge–furrow mulching improve soil hydrothermal characteristics and wolfberry (Lycium barbarum L.) growth in the Qaidam Basin of China," Agricultural Water Management, Elsevier, vol. 259(C).
    19. Lv, Shenqiang & Li, Jia & Yang, Zeyu & Yang, Ting & Li, Huitong & Wang, Xiaofei & Peng, Yi & Zhou, Chunju & Wang, Linquan & Abdo, Ahmed I., 2023. "The field mulching could improve sustainability of spring maize production on the Loess Plateau," Agricultural Water Management, Elsevier, vol. 279(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:11:y:2022:i:9:p:1489-:d:907277. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.