IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v11y2022i6p809-d827845.html
   My bibliography  Save this article

Impacts of Historical Land Use Changes on Ecosystem Services in Guangdong Province, China

Author

Listed:
  • Haizhen Chen

    (Ningbo Institute of Surveying, Mapping and Remote Sensing, Ningbo 315042, China)

  • Yi Chen

    (Ningbo Alatu Digital Technology Co., Ltd., Ningbo 315042, China)

  • Xiaosong Chen

    (Ningbo Institute of Surveying, Mapping and Remote Sensing, Ningbo 315042, China)

  • Xingzhong Zhang

    (Yinzhou District Institute of Surveying and Mapping of Ningbo City, Ningbo 315042, China)

  • Haowei Wu

    (School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China)

  • Zhihui Li

    (Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

Abstract

Assessing land use change and its impacts on ecosystem services is of great significance for optimizing land use management and enhancing ecosystem sustainability. This study explores land use changes and their impacts on five typical ecosystem services, namely grain production (GP), water yield (WY), soil conservation (SC), habitat quality (HQ), and carbon sequestration (CS), during 1990–2020 using the Integrated Valuation of Ecosystem Services and Trade-offs (InVEST) model in Guangdong province, which has experienced substantial land use change. During the study period, cultivated land, forest land, grassland, water areas, built-up land, and unused land correspondingly had changed by −10.7%, −1.9%, −5.1%, 13.7%, 97.9%, and −38.8%. For ecosystem services, the GP, SC, and HQ averagely decreased by −8.66% (−12.3 t·km −2 ), −0.02% (−2 t·km −2 ), and−2.74% (−0.02), respectively, while WY and CS increased by 3.10% (22 mm) and 20.70% (515 t·km −2 ), respectively. Land use changes that had the greatest average negative impacts on GP, WY, SC, HQ, and CS were cultivated land to built-up land (−150.9 t·km −2 ), unused land to water areas (−1072 mm), grassland to unused land (−10,166 t·km −2 ), forest land to built-up land (−0.65), and forest land to water areas (−2974 t·km −2 ) respectively, and that had the greatest average positive impacts were grassland to cultivated land (78.8 t·km −2 ), water areas to built-up land (943 mm), unused land to forest land (3552 t·km −2 ), built-up land to forest land (0.40), and water areas to forest land (3338 t·km −2 ), respectively. The results indicated that land use and its changes had a significant impact on ecosystem services.

Suggested Citation

  • Haizhen Chen & Yi Chen & Xiaosong Chen & Xingzhong Zhang & Haowei Wu & Zhihui Li, 2022. "Impacts of Historical Land Use Changes on Ecosystem Services in Guangdong Province, China," Land, MDPI, vol. 11(6), pages 1-18, May.
  • Handle: RePEc:gam:jlands:v:11:y:2022:i:6:p:809-:d:827845
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/11/6/809/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/11/6/809/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Stephen Polasky & Erik Nelson & Derric Pennington & Kris Johnson, 2011. "The Impact of Land-Use Change on Ecosystem Services, Biodiversity and Returns to Landowners: A Case Study in the State of Minnesota," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 48(2), pages 219-242, February.
    2. Bradley J. Cardinale & J. Emmett Duffy & Andrew Gonzalez & David U. Hooper & Charles Perrings & Patrick Venail & Anita Narwani & Georgina M. Mace & David Tilman & David A. Wardle & Ann P. Kinzig & Gre, 2012. "Biodiversity loss and its impact on humanity," Nature, Nature, vol. 486(7401), pages 59-67, June.
    3. Roshan Sharma & Udo Nehren & Syed Ajijur Rahman & Maximilian Meyer & Bhagawat Rimal & Gilang Aria Seta & Himlal Baral, 2018. "Modeling Land Use and Land Cover Changes and Their Effects on Biodiversity in Central Kalimantan, Indonesia," Land, MDPI, vol. 7(2), pages 1-14, May.
    4. Wang, Jieyu & Wang, Shaojian & Li, Shijie & Feng, Kuishuang, 2019. "Coupling analysis of urbanization and energy-environment efficiency: Evidence from Guangdong province," Applied Energy, Elsevier, vol. 254(C).
    5. Rimal, Bhagawat & Sharma, Roshan & Kunwar, Ripu & Keshtkar, Hamidreza & Stork, Nigel E. & Rijal, Sushila & Rahman, Syed Ajijur & Baral, Himlal, 2019. "Effects of land use and land cover change on ecosystem services in the Koshi River Basin, Eastern Nepal," Ecosystem Services, Elsevier, vol. 38(C), pages 1-1.
    6. Tasser, Erich & Schirpke, Uta & Zoderer, Brenda Maria & Tappeiner, Ulrike, 2020. "Towards an integrative assessment of land-use type values from the perspective of ecosystem services," Ecosystem Services, Elsevier, vol. 42(C).
    7. Gómez-Baggethun, Erik & Barton, David N., 2013. "Classifying and valuing ecosystem services for urban planning," Ecological Economics, Elsevier, vol. 86(C), pages 235-245.
    8. Bradley J. Cardinale & J. Emmett Duffy & Andrew Gonzalez & David U. Hooper & Charles Perrings & Patrick Venail & Anita Narwani & Georgina M. Mace & David Tilman & David A.Wardle & Ann P. Kinzig & Gret, 2012. "Correction: Corrigendum: Biodiversity loss and its impact on humanity," Nature, Nature, vol. 489(7415), pages 326-326, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhongming Li & Wei Fu & Mingcan Luo & Jiancheng Chen, 2022. "The Coupling Coordination between the Competitiveness Level and Land Use Efficiency of Green Food Industry in China," Land, MDPI, vol. 11(12), pages 1-22, November.
    2. Qikang Zhong & Zhe Li & Yujing He, 2023. "Coupling Evaluation and Spatial–Temporal Evolution of Land Ecosystem Services and Economic–Social Development in a City Group: The Case Study of the Chengdu–Chongqing City Group," IJERPH, MDPI, vol. 20(6), pages 1-29, March.
    3. Fuli Wang & Wei Fu & Jiancheng Chen, 2022. "Spatial–Temporal Evolution of Ecosystem Service Value in Yunnan Based on Land Use," Land, MDPI, vol. 11(12), pages 1-15, December.
    4. Ephias Mugari & Hillary Masundire, 2022. "Consistent Changes in Land-Use/Land-Cover in Semi-Arid Areas: Implications on Ecosystem Service Delivery and Adaptation in the Limpopo Basin, Botswana," Land, MDPI, vol. 11(11), pages 1-20, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaojuan Lin & Min Xu & Chunxiang Cao & Ramesh P. Singh & Wei Chen & Hongrun Ju, 2018. "Land-Use/Land-Cover Changes and Their Influence on the Ecosystem in Chengdu City, China during the Period of 1992–2018," Sustainability, MDPI, vol. 10(10), pages 1-20, October.
    2. Yang Liu & Jing Zhao & Xi Zheng & Xiaoyang Ou & Yaru Zhang & Jiaying Li, 2023. "Evaluation of Biodiversity Maintenance Capacity in Forest Landscapes: A Case Study in Beijing, China," Land, MDPI, vol. 12(7), pages 1-23, June.
    3. Yutong Zhang & Wei Zhou & Danxue Luo, 2023. "The Relationship Research between Biodiversity Conservation and Economic Growth: From Multi-Level Attempts to Key Development," Sustainability, MDPI, vol. 15(4), pages 1-19, February.
    4. Sueur, Cédric & Fourneret, Eric & Espinosa, Romain, 2023. "Animal capital: a new way to define human-animal bond in view of global changes," OSF Preprints svg7x, Center for Open Science.
    5. Yiwei Lian & Yang Bai & Zhongde Huang & Maroof Ali & Jie Wang & Haoran Chen, 2024. "Spatio-Temporal Changes and Habitats of Rare and Endangered Species in Yunnan Province Based on MaxEnt Model," Land, MDPI, vol. 13(2), pages 1-19, February.
    6. Gaeun Kim & Jiwon Kim & Youngjin Ko & Olebogeng Thelma G. Eyman & Sarwat Chowdhury & Julie Adiwal & Wookyun Lee & Yowhan Son, 2021. "How Do Nature-Based Solutions Improve Environmental and Socio-Economic Resilience to Achieve the Sustainable Development Goals? Reforestation and Afforestation Cases from the Republic of Korea," Sustainability, MDPI, vol. 13(21), pages 1-19, November.
    7. Shuangshuang Liu & Qipeng Liao & Mingzhu Xiao & Dengyue Zhao & Chunbo Huang, 2022. "Spatial and Temporal Variations of Habitat Quality and Its Response of Landscape Dynamic in the Three Gorges Reservoir Area, China," IJERPH, MDPI, vol. 19(6), pages 1-20, March.
    8. Jennifer M. H. Loch & Linda J. Walters & Melinda L. Donnelly & Geoffrey S. Cook, 2021. "Restored Coastal Habitat Can “Reel In” Juvenile Sportfish: Population and Community Responses in the Indian River Lagoon, Florida, USA," Sustainability, MDPI, vol. 13(22), pages 1-22, November.
    9. Waleed Iqbal & Muhammad Zahir Afridi & Aftab Jamal & Adil Mihoub & Muhammad Farhan Saeed & Árpád Székely & Adil Zia & Muhammad Awais Khan & Alfredo Jarma-Orozco & Marcelo F. Pompelli, 2022. "Canola Seed Priming and Its Effect on Gas Exchange, Chlorophyll Photobleaching, and Enzymatic Activities in Response to Salt Stress," Sustainability, MDPI, vol. 14(15), pages 1-22, July.
    10. Guangzi Li & Jun Cai, 2022. "Spatial and Temporal Differentiation of Mountain Ecosystem Service Trade-Offs and Synergies: A Case Study of Jieshi Mountain, China," Sustainability, MDPI, vol. 14(8), pages 1-16, April.
    11. Shishay Kiros Weldegebriel & Kumelachew Yeshitela, 2021. "Measuring the Semi-Century Ecosystem-Service Value Variation in Mekelle City Region, Northern Ethiopia," Sustainability, MDPI, vol. 13(18), pages 1-28, September.
    12. Hanwen Zhang & Yanqing Lang, 2022. "Quantifying and Analyzing the Responses of Habitat Quality to Land Use Change in Guangdong Province, China over the Past 40 Years," Land, MDPI, vol. 11(6), pages 1-23, May.
    13. Ronald S. Zalesny & Göran Berndes & Ioannis Dimitriou & Uwe Fritsche & Constance Miller & Mark Eisenbies & Solomon Ghezehei & Dennis Hazel & William L. Headlee & Blas Mola‐Yudego & M. Cristina Negri &, 2019. "Positive water linkages of producing short rotation poplars and willows for bioenergy and phytotechnologies," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 8(5), September.
    14. Hongmi Koo & Janina Kleemann & Christine Fürst, 2018. "Land Use Scenario Modeling Based on Local Knowledge for the Provision of Ecosystem Services in Northern Ghana," Land, MDPI, vol. 7(2), pages 1-21, May.
    15. Qiujin Chen & Yuqi Zhang & Yin Zhang & Mingliang Kong, 2022. "Examining Social Equity in the Co-Management of Terrestrial Protected Areas: Perceived Fairness of Local Communities in Giant Panda National Park, China," Land, MDPI, vol. 11(10), pages 1-17, September.
    16. Gabriela Woźniak & Monika Malicka & Jacek Kasztowski & Łukasz Radosz & Joanna Czarnecka & Jaco Vangronsveld & Dariusz Prostański, 2022. "How Important Are the Relations between Vegetation Diversity and Bacterial Functional Diversity for the Functioning of Novel Ecosystems?," Sustainability, MDPI, vol. 15(1), pages 1-16, December.
    17. Chun-Wei Chang & Takeshi Miki & Hao Ye & Sami Souissi & Rita Adrian & Orlane Anneville & Helen Agasild & Syuhei Ban & Yaron Be’eri-Shlevin & Yin-Ru Chiang & Heidrun Feuchtmayr & Gideon Gal & Satoshi I, 2022. "Causal networks of phytoplankton diversity and biomass are modulated by environmental context," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    18. Huixin Wang & Jing Xie & Shixian Luo & Duy Thong Ta & Qian Wang & Jiao Zhang & Daer Su & Katsunori Furuya, 2023. "Exploring the Interplay between Landscape Planning and Human Well-Being: A Scientometric Review," Land, MDPI, vol. 12(7), pages 1-24, June.
    19. Tolulope Ayodeji Olatoye & Ahmed Mukalazi Kalumba & Sonwabo Perez Mazinyo & Akinwunmi Sinday Odeyemi, 2023. "Impact of Urban Expansion on Coastal Vegetation Conservation in Buffalo City Metropolitan Municipality, South Africa," International Journal of Social Ecology and Sustainable Development (IJSESD), IGI Global, vol. 14(1), pages 1-21, January.
    20. Kangwei Jiang & Qingqing Zhang & Yafei Wang & Hong Li & Yongqiang Yang & Tursunnay Reyimu, 2023. "The Combination of Plant Diversity and Soil Microbial Diversity Directly and Actively Drives the Multifunctionality of Grassland Ecosystems in the Middle Part of the Northern Slopes of the Tian Shan u," Sustainability, MDPI, vol. 15(7), pages 1-19, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:11:y:2022:i:6:p:809-:d:827845. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.