IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v11y2022i3p442-d775224.html
   My bibliography  Save this article

Soil OC and N Stocks in the Saline Soil of Tunisian Gataaya Oasis Eight Years after Application of Manure and Compost

Author

Listed:
  • Nadhem Brahim

    (Laboratoire Plantes, Sols et Environnement LR21ES01, Faculty of Sciences of Tunis, University of Tunis El Manar, El Manar II, Tunis 2092, Tunisia)

  • Hatem Ibrahim

    (Faculty of Sciences of Bizerte, University of Carthage, Jarzouna 7021, Tunisia)

  • Rawan Mlih

    (Julich Research Center, Institute of Bio-Geoscience, Agrosphere Institute (IBG-3), 52428 Julich, Germany)

  • Abdelhakim Bouajila

    (Faculty of Sciences of Gabes, University of Gabes, Gabes 6029, Tunisia)

  • Nissaf Karbout

    (Eidg. Forschungsanstalt WSL Zürcherstrasse 111, CH-8903 Birmensdorf, Switzerland
    Institute of Arid Regions, Km 22.5 Route du Djorf, Medenine 4119, Tunisia)

  • Roland Bol

    (Julich Research Center, Institute of Bio-Geoscience, Agrosphere Institute (IBG-3), 52428 Julich, Germany
    School of Natural Sciences, Environment Centre Wales, Bangor University, Bangor LL57 2DG, UK)

Abstract

Soil organic matter plays an important role in improving soil properties, crop productivity and is a key constituent and driver of the global carbon cycle. Nevertheless, relatively limited quantitative information is available on the organic carbon (OC) stocks and the actual potentials for OC and total nitrogen (N) sequestration under arid cropping systems. In this study, we evaluated the immediate and long-term (after eight years) effects of compost or manure additions, at a rate of 100 t ha −1 , on the soil OC and N stocks in the Gataaya oasis in Southern Tunisia. The oasis had been abandoned and no additions had taken place in the 10 years prior to experiment. Soil samples were taken systematically every 10 cm up to a depth of 50 cm. After adding compost (CMP) and manure (MAN) in 2013, the bulk density (BD) decreased in the surface layers, especially at the 0–10 cm soil layer where it declined from 1.53 g cm −3 to 1.38 g cm −3 under compost and 1.41 g cm −3 under manure. Soil OC and N stocks, however, increased after adding compost and manure. Manure contributed more to OC stock increase than compost, with +337 and +241%, respectively. Correspondingly, the N stock increased by + 47 and +12%, respectively, due to manure and compost. After four years, compared to 2013 stocks, the decrease in OC stock was almost identical with −43 (CMP) and −41% (MAN). However, N stock seemed more stable under compost compared to manure, with −2 and −19%, respectively. After eight years, the N stock remained higher in the deepest layer 30–50 cm compared to other layers. This suggested that high gypsum application can inhibit N mineralization. The initial enhanced OC stock after the organic amendment, both for compost and for manure, was very quickly lost and after eight years had virtually returned to the initial OC state by the end of the eight years. Therefore, these oasis ecosystems require a near annual supply of exogenous organic material to maintain OC at an enhanced level. After eight years, manure amendment was found to be better than compost for increasing soil OC (3.16 against 1.86 t/ha, respectively) and for increasing N (0.35 against 0.18 t/ha, respectively). However, the cost and availability make the amendment with compost more interesting in oasis (400 Tunisian dinars/t for compost against 1016 Tunisian dinars/t for manure).

Suggested Citation

  • Nadhem Brahim & Hatem Ibrahim & Rawan Mlih & Abdelhakim Bouajila & Nissaf Karbout & Roland Bol, 2022. "Soil OC and N Stocks in the Saline Soil of Tunisian Gataaya Oasis Eight Years after Application of Manure and Compost," Land, MDPI, vol. 11(3), pages 1-16, March.
  • Handle: RePEc:gam:jlands:v:11:y:2022:i:3:p:442-:d:775224
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/11/3/442/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/11/3/442/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Eric A. Davidson & Ivan A. Janssens, 2006. "Temperature sensitivity of soil carbon decomposition and feedbacks to climate change," Nature, Nature, vol. 440(7081), pages 165-173, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nadia Bekhit & Fatiha Faraoun & Faiza Bennabi & Abbassia Ayache & Fawzia Toumi & Rawan Mlih & Viktoriia Lovynska & Roland Bol, 2025. "Impact of Management Practices on Soil Organic Carbon Content and Microbial Diversity Under Semi-Arid Conditions," Land, MDPI, vol. 14(5), pages 1-19, May.
    2. Ting-Shuai Shi & Scott L. Collins & Kailiang Yu & Josep Peñuelas & Jordi Sardans & Hailing Li & Jian-Sheng Ye, 2024. "A global meta-analysis on the effects of organic and inorganic fertilization on grasslands and croplands," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    3. Nidhal Marzougui & Nadia Ounalli & Sonia Sabbahi & Tarek Fezzani & Farah Abidi & Sihem Jebari & Sourour Melki & Ronny Berndtsson & Walid Oueslati, 2022. "How Can Sewage Sludge Use in Sustainable Tunisian Agriculture Be Increased?," Sustainability, MDPI, vol. 14(21), pages 1-22, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Md. Zonayet & Alok Kumar Paul & Md. Faisal-E-Alam & Khalid Syfullah & Rui Alexandre Castanho & Daniel Meyer, 2023. "Impact of Biochar as a Soil Conditioner to Improve the Soil Properties of Saline Soil and Productivity of Tomato," Sustainability, MDPI, vol. 15(6), pages 1-18, March.
    2. Raitis Normunds Meļņiks & Arta Bārdule & Aldis Butlers & Jordane Champion & Santa Kalēja & Ilona Skranda & Guna Petaja & Andis Lazdiņš, 2023. "Carbon Losses from Topsoil in Abandoned Peat Extraction Sites Due to Ground Subsidence and Erosion," Land, MDPI, vol. 12(12), pages 1-17, December.
    3. Xiangwen Wu & Shuying Zang & Dalong Ma & Jianhua Ren & Qiang Chen & Xingfeng Dong, 2019. "Emissions of CO 2 , CH 4 , and N 2 O Fluxes from Forest Soil in Permafrost Region of Daxing’an Mountains, Northeast China," IJERPH, MDPI, vol. 16(16), pages 1-14, August.
    4. Husnain Husnain & I. Wigena & Ai Dariah & Setiari Marwanto & Prihasto Setyanto & Fahmuddin Agus, 2014. "CO 2 emissions from tropical drained peat in Sumatra, Indonesia," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 19(6), pages 845-862, August.
    5. Nikolay Gorbach & Viktor Startsev & Anton Mazur & Evgeniy Milanovskiy & Anatoly Prokushkin & Alexey Dymov, 2022. "Simulation of Smoldering Combustion of Organic Horizons at Pine and Spruce Boreal Forests with Lab-Heating Experiments," Sustainability, MDPI, vol. 14(24), pages 1-20, December.
    6. Asik Dutta & Ranjan Bhattacharyya & Raimundo Jiménez-Ballesta & Abir Dey & Namita Das Saha & Sarvendra Kumar & Chaitanya Prasad Nath & Ved Prakash & Surendra Singh Jatav & Abhik Patra, 2023. "Conventional and Zero Tillage with Residue Management in Rice–Wheat System in the Indo-Gangetic Plains: Impact on Thermal Sensitivity of Soil Organic Carbon Respiration and Enzyme Activity," IJERPH, MDPI, vol. 20(1), pages 1-18, January.
    7. Franco-Luesma, Samuel & Álvaro-Fuentes, Jorge & Plaza-Bonilla, Daniel & Arrúe, José Luis & Cantero-Martínez, Carlos & Cavero, José, 2019. "Influence of irrigation time and frequency on greenhouse gas emissions in a solid-set sprinkler-irrigated maize under Mediterranean conditions," Agricultural Water Management, Elsevier, vol. 221(C), pages 303-311.
    8. Coletti, Janaine Z. & Hinz, Christoph & Vogwill, Ryan & Hipsey, Matthew R., 2013. "Hydrological controls on carbon metabolism in wetlands," Ecological Modelling, Elsevier, vol. 249(C), pages 3-18.
    9. Wei Wang & Wenjing Zeng & Weile Chen & Hui Zeng & Jingyun Fang, 2013. "Soil Respiration and Organic Carbon Dynamics with Grassland Conversions to Woodlands in Temperate China," PLOS ONE, Public Library of Science, vol. 8(8), pages 1-10, August.
    10. repec:plo:pone00:0097757 is not listed on IDEAS
    11. Guoai Li & Xuxu Chai & Zheng Shi & Honghua Ruan, 2023. "Interactive Effects Determine Radiocarbon Abundance in Soil Fractions of Global Biomes," Land, MDPI, vol. 12(5), pages 1-17, May.
    12. Qiang Li & Maofang Gao & Zhao-Liang Li, 2022. "Soil Organic Carbon Storage in Australian Wheat Cropping Systems in Response to Climate Change from 1990 to 2060," Land, MDPI, vol. 11(10), pages 1-15, September.
    13. Jinshi Jian & Vanessa Bailey & Kalyn Dorheim & Alexandra G. Konings & Dalei Hao & Alexey N. Shiklomanov & Abigail Snyder & Meredith Steele & Munemasa Teramoto & Rodrigo Vargas & Ben Bond-Lamberty, 2022. "Historically inconsistent productivity and respiration fluxes in the global terrestrial carbon cycle," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    14. Zhang, Fan & Li, Changsheng & Wang, Zheng & Glidden, Stanley & Grogan, Danielle S. & Li, Xuxiang & Cheng, Yan & Frolking, Steve, 2015. "Modeling impacts of management on farmland soil carbon dynamics along a climate gradient in Northwest China during 1981–2000," Ecological Modelling, Elsevier, vol. 312(C), pages 1-10.
    15. Miquelajauregui, Yosune & Cumming, Steven G. & Gauthier, Sylvie, 2019. "Short-term responses of boreal carbon stocks to climate change: A simulation study of black spruce forests," Ecological Modelling, Elsevier, vol. 409(C), pages 1-1.
    16. Jinquan Li & Junmin Pei & Changming Fang & Bo Li & Ming Nie, 2024. "Drought may exacerbate dryland soil inorganic carbon loss under warming climate conditions," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    17. Xue Chen & Haibo Hu & Qi Wang & Xia Wang & Bing Ma, 2024. "Exploring the Factors Affecting Terrestrial Soil Respiration in Global Warming Manipulation Experiments Based on Meta-Analysis," Agriculture, MDPI, vol. 14(9), pages 1-15, September.
    18. Mukherjee, Joyita & Ray, Santanu & Ghosh, Phani Bhusan, 2013. "A system dynamic modeling of carbon cycle from mangrove litter to the adjacent Hooghly estuary, India," Ecological Modelling, Elsevier, vol. 252(C), pages 185-195.
    19. Coilín ÓhAiseadha & Gerré Quinn & Ronan Connolly & Michael Connolly & Willie Soon, 2020. "Energy and Climate Policy—An Evaluation of Global Climate Change Expenditure 2011–2018," Energies, MDPI, vol. 13(18), pages 1-49, September.
    20. Shuai Ren & Tao Wang & Bertrand Guenet & Dan Liu & Yingfang Cao & Jinzhi Ding & Pete Smith & Shilong Piao, 2024. "Projected soil carbon loss with warming in constrained Earth system models," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    21. Rong Hao & Xingle Ning & Yaru Zhou & Ruicheng Ma & Xueshuai Zhang & Guohong Qiu & Ronggui Hu, 2024. "Inputs of terrestrial dissolved organic matter in dam reservoirs during precipitation: impact on water quality and management," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(5), pages 4349-4366, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:11:y:2022:i:3:p:442-:d:775224. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.