IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v11y2022i12p2247-d998669.html
   My bibliography  Save this article

Comparing the Urban Floods Resistance of Common Tree Species in Winter City Parks

Author

Listed:
  • Chang Zhai

    (College of Landscape Architecture, Changchun University, Changchun 130022, China)

  • Zhonghui Zhang

    (Institute of Forest Management, Jilin Provincial Academy of Forestry Sciences, Changchun 130033, China)

  • Guangdao Bao

    (Institute of Forest Management, Jilin Provincial Academy of Forestry Sciences, Changchun 130033, China)

  • Dan Zhang

    (College of Landscape Architecture, Changchun University, Changchun 130022, China)

  • Ting Liu

    (Institute of Forest Management, Jilin Provincial Academy of Forestry Sciences, Changchun 130033, China)

  • Jiaqi Chen

    (College of Landscape Architecture, Changchun University, Changchun 130022, China)

  • Mingming Ding

    (College of Landscape Architecture, Changchun University, Changchun 130022, China)

  • Ruoxuan Geng

    (College of Landscape Architecture, Changchun University, Changchun 130022, China)

  • Ning Fang

    (College of Landscape Architecture, Changchun University, Changchun 130022, China)

Abstract

The rapid urbanization process and high-intensity construction mode have greatly changed the underlying surface structure and spatial distribution of the natural land surface, further amplified the possibility of urban floods, and made urban security face more serious threats. Urban forest could help to mitigate urban floods through water holding and interception by its unique structures, especially the litter layer. This paper compared the ability of different forest tree species on urban floods mitigation, through analyzing their litter accumulation, litter water holding characteristics, and water interception features of different decomposed layers. The results concluded that Quercus mongolica Fisch. ex Ledeb. (QM) forest, Betula platyphylla Sukaczev (BP) forest, Larix gmelinii (Rupr.) Kuzen. (LG) forest, and Picea koraiensis Nakai (PK) forest were the best choices for improving urban floods resistance in a high-urbanization winter city, for they had larger litter mass and higher maximum water holding and interception capacity. The corresponding results of this study could help environmental management departments worldwide in the selection of tree species in urban greening projects focusing on urban flood control.

Suggested Citation

  • Chang Zhai & Zhonghui Zhang & Guangdao Bao & Dan Zhang & Ting Liu & Jiaqi Chen & Mingming Ding & Ruoxuan Geng & Ning Fang, 2022. "Comparing the Urban Floods Resistance of Common Tree Species in Winter City Parks," Land, MDPI, vol. 11(12), pages 1-14, December.
  • Handle: RePEc:gam:jlands:v:11:y:2022:i:12:p:2247-:d:998669
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/11/12/2247/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/11/12/2247/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mao, Xuhui & Jia, Haifeng & Yu, Shaw L., 2017. "Assessing the ecological benefits of aggregate LID-BMPs through modelling," Ecological Modelling, Elsevier, vol. 353(C), pages 139-149.
    2. Liu, Wen & Chen, Weiping & Peng, Chi, 2014. "Assessing the effectiveness of green infrastructures on urban flooding reduction: A community scale study," Ecological Modelling, Elsevier, vol. 291(C), pages 6-14.
    3. Weike Chen & Jing Dong & Chaohua Yan & Hui Dong & Ping Liu, 2021. "What Causes Waterlogging?—Explore the Urban Waterlogging Control Scheme through System Dynamics Simulation," Sustainability, MDPI, vol. 13(15), pages 1-21, July.
    4. Huafei Yu & Yaolong Zhao & Yingchun Fu & Le Li, 2018. "Spatiotemporal Variance Assessment of Urban Rainstorm Waterlogging Affected by Impervious Surface Expansion: A Case Study of Guangzhou, China," Sustainability, MDPI, vol. 10(10), pages 1-22, October.
    5. Meiling Zhou & Xiuli Feng & Kaikai Liu & Chi Zhang & Lijian Xie & Xiaohe Wu, 2021. "An Alternative Risk Assessment Model of Urban Waterlogging: A Case Study of Ningbo City," Sustainability, MDPI, vol. 13(2), pages 1-20, January.
    6. Shiping Su & Xiaoe Liu, 2022. "The Water Storage Function of Litters and Soil in Five Typical Plantations in the Northern and Southern Mountains of Lanzhou, Northwest China," Sustainability, MDPI, vol. 14(14), pages 1-17, July.
    7. Yibo Yang & Guangdao Bao & Dan Zhang & Chang Zhai, 2022. "Spatial Distribution and Driving Factors of Old and Notable Trees in a Fast-Developing City, Northeast China," Sustainability, MDPI, vol. 14(13), pages 1-19, June.
    8. Hui Zhang & Jiong Cheng & Zhifeng Wu & Cheng Li & Jun Qin & Tong Liu, 2018. "Effects of Impervious Surface on the Spatial Distribution of Urban Waterlogging Risk Spots at Multiple Scales in Guangzhou, South China," Sustainability, MDPI, vol. 10(5), pages 1-20, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Weike Chen & Jing Dong & Chaohua Yan & Hui Dong & Ping Liu, 2021. "What Causes Waterlogging?—Explore the Urban Waterlogging Control Scheme through System Dynamics Simulation," Sustainability, MDPI, vol. 13(15), pages 1-21, July.
    2. Huafei Yu & Yaolong Zhao & Yingchun Fu, 2019. "Optimization of Impervious Surface Space Layout for Prevention of Urban Rainstorm Waterlogging: A Case Study of Guangzhou, China," IJERPH, MDPI, vol. 16(19), pages 1-28, September.
    3. Meiling Zhou & Xiuli Feng & Kaikai Liu & Chi Zhang & Lijian Xie & Xiaohe Wu, 2021. "An Alternative Risk Assessment Model of Urban Waterlogging: A Case Study of Ningbo City," Sustainability, MDPI, vol. 13(2), pages 1-20, January.
    4. Xiaodong Huang & Wenkai Liu & Yuping Han & Chunying Wang & Han Wang & Sai Hu, 2019. "Performance Evaluation and Comparison of Modified Spectral Mixture Analysis Method for Different Images of Landsat Series Satellites," Sustainability, MDPI, vol. 11(22), pages 1-18, November.
    5. Jing Peng & Lei Yu & Xiang Zhong & Tiansong Dong, 2022. "Study on Runoff Control Effect of Different Drainage Schemes in Sponge Airport," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(3), pages 1043-1055, February.
    6. Shi Qiu & Haiwei Yin & Jinling Deng & Muhan Li, 2020. "Cost-Effectiveness Analysis of Green–Gray Stormwater Control Measures for Non-Point Source Pollution," IJERPH, MDPI, vol. 17(3), pages 1-13, February.
    7. Wang, Yutao & Sun, Mingxing & Song, Baimin, 2017. "Public perceptions of and willingness to pay for sponge city initiatives in China," Resources, Conservation & Recycling, Elsevier, vol. 122(C), pages 11-20.
    8. Lin, Sheng-Hau & Zhao, Xiaofeng & Wu, Jiuxing & Liang, Fachao & Li, Jia-Hsuan & Lai, Ren-Ji & Hsieh, Jing-Chzi & Tzeng, Gwo-Hshiung, 2021. "An evaluation framework for developing green infrastructure by using a new hybrid multiple attribute decision-making model for promoting environmental sustainability," Socio-Economic Planning Sciences, Elsevier, vol. 75(C).
    9. Yinhong Hu & Weiwei Yu & Bowen Cui & Yuanyuan Chen & Hua Zheng & Xiaoke Wang, 2021. "Pavement Overrides the Effects of Tree Species on Soil Bacterial Communities," IJERPH, MDPI, vol. 18(4), pages 1-11, February.
    10. Hyomin Kim & Dong-Kun Lee & Sunyong Sung, 2016. "Effect of Urban Green Spaces and Flooded Area Type on Flooding Probability," Sustainability, MDPI, vol. 8(2), pages 1-17, January.
    11. Xu-Wei Wang & Ye-Shuang Xu, 2022. "Investigation on the phenomena and influence factors of urban ground collapse in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 113(1), pages 1-33, August.
    12. Tong Xu & Zhiqiang Xie & Fei Zhao & Yimin Li & Shouquan Yang & Yangbin Zhang & Siqiao Yin & Shi Chen & Xuan Li & Sidong Zhao & Zhiqun Hou, 2022. "Permeability control and flood risk assessment of urban underlying surface: a case study of Runcheng south area, Kunming," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(1), pages 661-686, March.
    13. Antonios Kolimenakis & Alexandra D. Solomou & Nikolaos Proutsos & Evangelia V. Avramidou & Evangelia Korakaki & Georgios Karetsos & Georgios Maroulis & Eleftherios Papagiannis & Konstantinia Tsagkari, 2021. "The Socioeconomic Welfare of Urban Green Areas and Parks; A Literature Review of Available Evidence," Sustainability, MDPI, vol. 13(14), pages 1-26, July.
    14. Byungsun Yang & Dong Kun Lee, 2021. "Planning Strategy for the Reduction of Runoff Using Urban Green Space," Sustainability, MDPI, vol. 13(4), pages 1-13, February.
    15. Tii N. Nchofoung & Simplice A. Asongu & Arsène A. Njamen Kengdo & Elvis D. Achuo, 2022. "Linear and non‐linear effects of infrastructures on inclusive human development in Africa," African Development Review, African Development Bank, vol. 34(1), pages 81-96, March.
    16. Liu, Wen & Chen, Weiping & Peng, Chi, 2015. "Influences of setting sizes and combination of green infrastructures on community’s stormwater runoff reduction," Ecological Modelling, Elsevier, vol. 318(C), pages 236-244.
    17. Luoyang Wang & Yao Li & Hao Hou & Yan Chen & Jinjin Fan & Pin Wang & Tangao Hu, 2022. "Analyzing spatial variance of urban waterlogging disaster at multiple scales based on a hydrological and hydrodynamic model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(2), pages 1915-1938, November.
    18. Andrea I. Frank & Andrew Flynn & Nick Hacking & Christopher Silver, 2021. "More Than Open Space! The Case for Green Infrastructure Teaching in Planning Curricula," Urban Planning, Cogitatio Press, vol. 6(1), pages 63-74.
    19. Ahmad, Shakeel & Jia, Haifeng & Chen, Zhengxia & Li, Qian & Xu, Changqing, 2020. "Water-energy nexus and energy efficiency: A systematic analysis of urban water systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    20. Byungsun Yang & Dongkun Lee, 2021. "Urban Green Space Arrangement for an Optimal Landscape Planning Strategy for Runoff Reduction," Land, MDPI, vol. 10(9), pages 1-12, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:11:y:2022:i:12:p:2247-:d:998669. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.