IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v11y2022i12p2187-d991451.html
   My bibliography  Save this article

Evaluating Biophysical Conservation Practices with Dynamic Land Use and Land Cover in the Highlands of Ethiopia

Author

Listed:
  • Meseret B. Addisie

    (Guna Tana Integrated Field Research and Development Center, Debre Tabor University, Debre Tabor P.O.Box 272, Ethiopia)

  • Gashaw Molla

    (Department of Geography and Environmental Studies, Bahir Dar University, Bahir Dar P.O.Box 79, Ethiopia)

  • Menberu Teshome

    (Department of Geography and Environmental Studies, Debre Tabor University, Debre Tabor P.O.Box 272, Ethiopia)

  • Gebiaw T. Ayele

    (Australian Rivers Institute, School of Engineering and Built Environment, Griffith University, Nathan, QLD 4111, Australia)

Abstract

Ethiopia is one of the sub-Saharan countries affected by land degradation, notably by soil erosion. The government of Ethiopia has launched an extensive biophysical soil and water conservation (SWC) effort each year to address the problem. These practices were installed on varying land use and land cover (LULC) systems. Despite the fact that the interventions covered the majority of the landmasses, there were no quantitative data on the scale of biophysical measures with the change in land use and land cover. Therefore, the objective of this study was to evaluate biophysical conservation practices with dynamic land use and land cover in the highlands of Ethiopia. The study focused on districts of the Amhara regional state’s South Gondar zone. A mixed research methodology was employed to gather pertinent data for the study. The dynamics of LULC were analyzed using satellite images acquired between 1990 and 2020. Biophysical conservation measures’ data and qualitative information were collected from the zonal office of agriculture. Twelve years’ worth of biophysical SWC measures data were used for the study. The results indicate that cultivated land makes up the majority of land use and land cover. Bunds built on cultivated land account for 93% of conservation practices. During the study period, there was a significant decline of biophysical conservation practices implementation in each district. Although plantation was used on a wider scale, it was unable to sustain physical SWC practices or expand forest cover in the region. In addition, lack of integrated maintenance for early installed structures decreases the effectiveness of SWC measures. In conclusion, the dynamics of LULC have a significant impact on the magnitude of biophysical conservation measures. Therefore, watershed managers shall consider the spatio-temporal variation of LULC while planning conservation practices.

Suggested Citation

  • Meseret B. Addisie & Gashaw Molla & Menberu Teshome & Gebiaw T. Ayele, 2022. "Evaluating Biophysical Conservation Practices with Dynamic Land Use and Land Cover in the Highlands of Ethiopia," Land, MDPI, vol. 11(12), pages 1-13, December.
  • Handle: RePEc:gam:jlands:v:11:y:2022:i:12:p:2187-:d:991451
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/11/12/2187/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/11/12/2187/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Petros, Welay & Tesfahunegn, Gebreyesus Brhane & Berihu, Mulugeta & Meinderts, Johan, 2021. "Effectiveness of water-saving techniques on growth performance of Mango (Mangifera Indica L.) Seedlings in Mihitsab-Azmati Watershed, Rama Area, Northern Ethiopia," Agricultural Water Management, Elsevier, vol. 243(C).
    2. Hailu, Alemenesh & Mammo, Siraj & Kidane, Moges, 2020. "Dynamics of land use, land cover change trend and its drivers in Jimma Geneti District, Western Ethiopia," Land Use Policy, Elsevier, vol. 99(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lilian Ding & Yan Liao & Congmou Zhu & Qiwei Zheng & Ke Wang, 2023. "Multiscale Analysis of the Effects of Landscape Pattern on the Trade-Offs and Synergies of Ecosystem Services in Southern Zhejiang Province, China," Land, MDPI, vol. 12(5), pages 1-18, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Juan Li & Xunzhou Chunyu & Feng Huang, 2022. "Land Use Pattern Changes and the Driving Forces in the Shiyang River Basin from 2000 to 2018," Sustainability, MDPI, vol. 15(1), pages 1-27, December.
    2. Norton Barros Felix & Priscila Celebrini de Oliveira Campos & Igor Paz & Maria Esther Soares Marques, 2022. "Geoprocessing Applied to the Assessment of Carbon Storage and Sequestration in a Brazilian Medium-Sized City," Sustainability, MDPI, vol. 14(14), pages 1-16, July.
    3. Zhangxuan Qin & Xiaolin Liu & Xiaoyan Lu & Mengfei Li & Fei Li, 2022. "Grain Production Space Reconstruction and Its Influencing Factors in the Loess Plateau," IJERPH, MDPI, vol. 19(10), pages 1-18, May.
    4. Markos Mathewos & Semaria Moga Lencha & Misgena Tsegaye, 2022. "Land Use and Land Cover Change Assessment and Future Predictions in the Matenchose Watershed, Rift Valley Basin, Using CA-Markov Simulation," Land, MDPI, vol. 11(10), pages 1-28, September.
    5. Zhou, Bing-Bing & Aggarwal, Rimjhim & Wu, Jianguo & Lv, Ligang, 2021. "Urbanization-associated farmland loss: A macro-micro comparative study in China," Land Use Policy, Elsevier, vol. 101(C).
    6. Motuma Shiferaw Regasa & Michael Nones, 2022. "Past and Future Land Use/Land Cover Changes in the Ethiopian Fincha Sub-Basin," Land, MDPI, vol. 11(8), pages 1-20, August.
    7. Joseph Oduro Appiah & Dina Adei & Williams Agyemang-Duah, 2022. "Land Use and Landscape Characteristics Are Associated with Core Forest Patches in Ghana," Land, MDPI, vol. 12(1), pages 1-15, December.
    8. Motuma Shiferaw Regasa & Michael Nones & Dereje Adeba, 2021. "A Review on Land Use and Land Cover Change in Ethiopian Basins," Land, MDPI, vol. 10(6), pages 1-18, June.
    9. Abera Assefa Biratu & Bobe Bedadi & Solomon Gebreyohannis Gebrehiwot & Assefa M. Melesse & Tilahun Hordofa Nebi & Wuletawu Abera & Lulseged Tamene & Anthony Egeru, 2022. "Ecosystem Service Valuation along Landscape Transformation in Central Ethiopia," Land, MDPI, vol. 11(4), pages 1-18, March.
    10. Abera Assefa Biratu & Bobe Bedadi & Solomon Gebreyohannis Gebrehiwot & Assefa M. Melesse & Tilahun Hordofa Nebi & Wuletawu Abera & Lulseged Tamene & Anthony Egeru, 2022. "Impact of Landscape Management Scenarios on Ecosystem Service Values in Central Ethiopia," Land, MDPI, vol. 11(8), pages 1-16, August.
    11. Abdu, Nizam & Tinch, Elena & Levitt, Clinton & Volker, Peter W. & Hatton MacDonald, Darla, 2022. "Illegal firewood collection in Tasmania: Approaching the problem with the Institutional Analysis and Development (IAD) framework," Land Use Policy, Elsevier, vol. 118(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:11:y:2022:i:12:p:2187-:d:991451. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.