IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v11y2022i10p1870-d949434.html
   My bibliography  Save this article

Coupling Coordination Analysis of Ecosystem Services and Urbanization in Inner Mongolia, China

Author

Listed:
  • Li Na

    (College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China)

  • Yangling Zhao

    (College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China)

  • Luo Guo

    (College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China)

Abstract

Given that ecological and environmental functions are greatly influenced by rapid urbanization, a clear understanding of the relationship between ecosystem services (ESs) and urbanization is urgently needed to improve sustainable development in Inner Mongolia. In this study, we first carried out ecosystem service valuation (ESV) using the value coefficient method. We then examined the urbanization level using a comprehensive indicator system. Finally, we applied the coupling coordination degree model to analyze the coordination relationship between ecosystem services and urbanization from 1995 to 2020 in Inner Mongolia. The results showed that there was an increase in both the urbanization level and all ecosystem services excluding climate regulation, environmental purification, and biodiversity services. The coupling coordination degree (CCD) of Inner Mongolia is not ideal, and most counties remain at a low level of coordination degree. Furthermore, spatiotemporal heterogeneity was evident in the CCD of ecosystem services and urbanization as it was higher in the center and east of the country, but lower in the north and west regions. Relevant policies should be implemented to strengthen the advantages of local ecology, encourage environmentally friendly industrialization, and promote ecologically and economically sustainable development.

Suggested Citation

  • Li Na & Yangling Zhao & Luo Guo, 2022. "Coupling Coordination Analysis of Ecosystem Services and Urbanization in Inner Mongolia, China," Land, MDPI, vol. 11(10), pages 1-18, October.
  • Handle: RePEc:gam:jlands:v:11:y:2022:i:10:p:1870-:d:949434
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/11/10/1870/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/11/10/1870/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yan Yu & Yan Tong & Wenwu Tang & Yanbin Yuan & Yue Chen, 2018. "Identifying Spatiotemporal Interactions between Urbanization and Eco-Environment in the Urban Agglomeration in the Middle Reaches of the Yangtze River, China," Sustainability, MDPI, vol. 10(1), pages 1-19, January.
    2. Yuan, Mei-Hua & Lo, Shang-Lien, 2020. "Ecosystem services and sustainable development: Perspectives f1 rom the food-energy-water Nexus," Ecosystem Services, Elsevier, vol. 46(C).
    3. Md. Mostafizur Rahman & György Szabó, 2021. "Impact of Land Use and Land Cover Changes on Urban Ecosystem Service Value in Dhaka, Bangladesh," Land, MDPI, vol. 10(8), pages 1-27, July.
    4. Zamboni, Nadia Selene & Noleto Filho, Eurico Mesquita & Carvalho, Adriana Rosa, 2021. "Unfolding differences in the distribution of coastal marine ecosystem services values among developed and developing countries," Ecological Economics, Elsevier, vol. 189(C).
    5. Cortinovis, Chiara & Geneletti, Davide, 2018. "Ecosystem services in urban plans: What is there, and what is still needed for better decisions," Land Use Policy, Elsevier, vol. 70(C), pages 298-312.
    6. Usama Al-Mulali & Sakiru Solarin & Ilhan Ozturk, 2016. "Investigating the presence of the environmental Kuznets curve (EKC) hypothesis in Kenya: an autoregressive distributed lag (ARDL) approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(3), pages 1729-1747, February.
    7. Wenbiao Zhang & Degang Yang & Jinwei Huo, 2016. "Studies of the Relationship between City Size and Urban Benefits in China Based on a Panel Data Model," Sustainability, MDPI, vol. 8(6), pages 1-18, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xinyi Liu & Huixian Jiang, 2023. "Dynamic Evaluation of Ecological Environment Quality in Coastal Cities from the Perspective of Water Quality: The Case of Fuzhou City," Sustainability, MDPI, vol. 15(15), pages 1-18, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qilong Shao & Li Peng & Yichan Liu & Yongchang Li, 2023. "A Bibliometric Analysis of Urban Ecosystem Services: Structure, Evolution, and Prospects," Land, MDPI, vol. 12(2), pages 1-23, January.
    2. Xiaoqing Lin & Chunyan Lu & Kaishan Song & Ying Su & Yifan Lei & Lianxiu Zhong & Yibin Gao, 2020. "Analysis of Coupling Coordination Variance between Urbanization Quality and Eco-Environment Pressure: A Case Study of the West Taiwan Strait Urban Agglomeration, China," Sustainability, MDPI, vol. 12(7), pages 1-19, March.
    3. Pietrzyk-Kaszyńska, Agata & Olszańska, Agnieszka & Rechciński, Marcin & Tusznio, Joanna & Grodzińska-Jurczak, Małgorzata, 2022. "Divergent or convergent? Prioritization and spatial representation of ecosystem services as perceived by conservation professionals and local leaders," Land Use Policy, Elsevier, vol. 119(C).
    4. Tandarić, Neven & Ives, Christopher D. & Watkins, Charles, 2022. "From city in the park to “greenery in plant pots”: The influence of socialist and post-socialist planning on opportunities for cultural ecosystem services," Land Use Policy, Elsevier, vol. 120(C).
    5. Ahmed, Khalid, 2015. "The sheer scale of China’s urban renewal and CO2 emissions: Multiple structural breaks, long-run relationship and short-run dynamics," MPRA Paper 71035, University Library of Munich, Germany.
    6. Miroshnyk, N.V. & Likhanov, A.F. & Grabovska, T.O. & Teslenko, I.K. & Roubík, H., 2022. "Green infrastructure and relationship with urbanization – Importance and necessity of integrated governance," Land Use Policy, Elsevier, vol. 114(C).
    7. Adams, Clare & Frantzeskaki, Niki & Moglia, Magnus, 2023. "Mainstreaming nature-based solutions in cities: A systematic literature review and a proposal for facilitating urban transitions," Land Use Policy, Elsevier, vol. 130(C).
    8. Chiara Cortinovis & Grazia Zulian & Davide Geneletti, 2018. "Assessing Nature-Based Recreation to Support Urban Green Infrastructure Planning in Trento (Italy)," Land, MDPI, vol. 7(4), pages 1-20, September.
    9. González-García, Alberto & Palomo, Ignacio & González, José A. & López, César A. & Montes, Carlos, 2020. "Quantifying spatial supply-demand mismatches in ecosystem services provides insights for land-use planning," Land Use Policy, Elsevier, vol. 94(C).
    10. Le Hoang Phong, 2019. "Globalization, Financial Development, and Environmental Degradation in the Presence of Environmental Kuznets Curve: Evidence from ASEAN-5 Countries," International Journal of Energy Economics and Policy, Econjournals, vol. 9(2), pages 40-50.
    11. Ameer, Ayesha & Munir, Kashif, 2016. "Effect of Economic Growth, Trade Openness, Urbanization, and Technology on Environment of Selected Asian Countries," MPRA Paper 74571, University Library of Munich, Germany.
    12. Md. Mostafizur Rahman & György Szabó, 2021. "A Geospatial Approach to Measure Social Benefits in Urban Land Use Optimization Problem," Land, MDPI, vol. 10(12), pages 1-23, December.
    13. Antonio Ledda & Marta Kubacka & Giovanna Calia & Sylwia Bródka & Vittorio Serra & Andrea De Montis, 2023. "Italy vs. Poland: A Comparative Analysis of Regional Planning System Attitudes toward Adaptation to Climate Changes and Green Infrastructures," Sustainability, MDPI, vol. 15(3), pages 1-18, January.
    14. Menzori, Ivan Damasco & Sousa, Isabel Cristina Nunes de & Gonçalves, Luciana Márcia, 2021. "Urban growth management and territorial governance approaches: A master plans conformance analysis," Land Use Policy, Elsevier, vol. 105(C).
    15. Fatemeh Mohammadyari & Ardavan Zarandian & Mir Mehrdad Mirsanjari & Jurate Suziedelyte Visockiene & Egle Tumeliene, 2023. "Modelling Impact of Urban Expansion on Ecosystem Services: A Scenario-Based Approach in a Mixed Natural/Urbanised Landscape," Land, MDPI, vol. 12(2), pages 1-24, January.
    16. Sarkodie, Samuel Asumadu & Ozturk, Ilhan, 2020. "Investigating the Environmental Kuznets Curve hypothesis in Kenya: A multivariate analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    17. Yaya Keho, 2017. "Revisiting the Income, Energy Consumption and Carbon Emissions Nexus: New Evidence from Quantile Regression for Different Country Groups," International Journal of Energy Economics and Policy, Econjournals, vol. 7(3), pages 356-363.
    18. Ahmad Ahmad & Temitope J. Laniran, 2021. "FDI, Economic performance and CO2 discharge in Nigeria," International Journal of Research and Scientific Innovation, International Journal of Research and Scientific Innovation (IJRSI), vol. 8(3), pages 50-54, March.
    19. Angela Colucci, 2023. "Resilience Practices Contribution Enabling European Landscape Policy Innovation and Implementation," Land, MDPI, vol. 12(3), pages 1-15, March.
    20. Mouna Ben Abdeljelil & Christophe Rault & Fateh Belaïd, 2023. "Economic growth and pollutant emissions: new panel evidence from the union for the Mediterranean countries," Economic Change and Restructuring, Springer, vol. 56(3), pages 1537-1566, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:11:y:2022:i:10:p:1870-:d:949434. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.