IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v11y2022i10p1661-d925406.html
   My bibliography  Save this article

Global Climate Change Effects on Soil Microbial Biomass Stoichiometry in Alpine Ecosystems

Author

Listed:
  • Luyun Chen

    (Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China)

  • Yongheng Gao

    (Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China)

Abstract

Alpine ecosystems are sensitive to global climate change-factors, which directly or indirectly affect the soil microbial biomass stoichiometry. In this paper, we have compared the soil microbial biomass stoichiometry ratios of alpine ecosystems using the global average values. In the comparison, the responses and mechanisms of soil microbial biomass stoichiometry to nitrogen deposition, altered precipitation, warming, and elevated atmospheric carbon dioxide (CO 2 ) concentration in the alpine ecosystem were considered. The alpine ecosystem has a higher soil microbial-biomass-carbon-to-nitrogen ratio (MBC:MBN) than the global average. In contrast, the soil microbial-biomass-nitrogen-to-phosphorus (MBN:MBP) and carbon-to-phosphorus ratios (MBC:MBP) varied considerably in different types of alpine ecosystems. When compared with the global average values of these ratios, no uniform pattern was found. In response to the increase in nitrogen (N) deposition, on the one hand, microbes will adopt strategies to regulate extracellular enzyme synthesis and excrete excess elements to maintain stoichiometric balance. On the other hand, microbes may also alter their stoichiometry by storing excess N in their bodies to adapt to the increased N in the environment. Thus, a decrease in MBC:MBN and an increase in MBN:MBP are observed. In addition, N deposition directly and indirectly affects the soil fungal-to-bacterial ratio (F:B), which in turn changes the soil microbial biomass stoichiometry. For warming, there is no clear pattern in the response of soil microbial biomass stoichiometry in alpine ecosystems. The results show diverse decreasing, increasing, and unchanging patterns. Under reduced precipitation, microbial communities in alpine ecosystems typically shift to a fungal dominance. The latter community supports a greater carbon-to-nitrogen ratio (C:N) and thus an increased soil MBC:MBN. However, increased precipitation enhances N effectiveness and exacerbates the leaching of dissolved organic carbon (DOC) and phosphorus (P) from alpine ecosystem soils. As a result, a decrease in the soil MBC:MBN and an increase in the soil MBN:MBP are evident. Elevated atmospheric CO 2 usually has little effect on the soil MBC:MBN in alpine ecosystems, mainly because of two reasons. These are: (i) N is the main limiting factor in alpine ecosystems, and (ii) alpine ecosystems accumulate higher soil organic carbon (SOC) and microbes and preferentially decompose “old” carbon (C) stocks. The response of soil microbial stoichiometry to global climate change factors in alpine ecosystems is diverse, and the impact pathways are complex. Future studies need to focus on the combined effects of multiple global climate change factors on microbial stoichiometry and the mechanism of microbial stoichiometric balance.

Suggested Citation

  • Luyun Chen & Yongheng Gao, 2022. "Global Climate Change Effects on Soil Microbial Biomass Stoichiometry in Alpine Ecosystems," Land, MDPI, vol. 11(10), pages 1-16, September.
  • Handle: RePEc:gam:jlands:v:11:y:2022:i:10:p:1661-:d:925406
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/11/10/1661/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/11/10/1661/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. James J. Elser & William F. Fagan & Robert F. Denno & Dean R. Dobberfuhl & Ayoola Folarin & Andrea Huberty & Sebastian Interlandi & Susan S. Kilham & Edward McCauley & Kimberly L. Schulz & Evan H. Sie, 2000. "Nutritional constraints in terrestrial and freshwater food webs," Nature, Nature, vol. 408(6812), pages 578-580, November.
    2. Yanling Liu & Lijiao Fu & Xuyang Lu & Yan Yan, 2022. "Characteristics of Soil Nutrients and Their Ecological Stoichiometry in Different Land Use Types in the Nianchu River Basin," Land, MDPI, vol. 11(7), pages 1-16, June.
    3. Alistair W. R. Seddon & Marc Macias-Fauria & Peter R. Long & David Benz & Kathy J. Willis, 2016. "Sensitivity of global terrestrial ecosystems to climate variability," Nature, Nature, vol. 531(7593), pages 229-232, March.
    4. Jack A. Morgan & Daniel R. LeCain & Elise Pendall & Dana M. Blumenthal & Bruce A. Kimball & Yolima Carrillo & David G. Williams & Jana Heisler-White & Feike A. Dijkstra & Mark West, 2011. "C4 grasses prosper as carbon dioxide eliminates desiccation in warmed semi-arid grassland," Nature, Nature, vol. 476(7359), pages 202-205, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hailiang Li & M. James C. Crabbe & Haikui Chen, 2020. "History and Trends in Ecological Stoichiometry Research from 1992 to 2019: A Scientometric Analysis," Sustainability, MDPI, vol. 12(21), pages 1-21, October.
    2. Senthold Asseng & David Pannell, 2013. "Adapting dryland agriculture to climate change: Farming implications and research and development needs in Western Australia," Climatic Change, Springer, vol. 118(2), pages 167-181, May.
    3. Law, Tony & Zhang, Weitao & Zhao, Jingyang & Arhonditsis, George B., 2009. "Structural changes in lake functioning induced from nutrient loading and climate variability," Ecological Modelling, Elsevier, vol. 220(7), pages 979-997.
    4. Meng Luo & Shengwei Zhang & Lei Huang & Zhiqiang Liu & Lin Yang & Ruishen Li & Xi Lin, 2022. "Temporal and Spatial Changes of Ecological Environment Quality Based on RSEI: A Case Study in Ulan Mulun River Basin, China," Sustainability, MDPI, vol. 14(20), pages 1-19, October.
    5. Sharaniya Vijitharan & Nophea Sasaki & Manjunatha Venkatappa & Nitin Kumar Tripathi & Issei Abe & Takuji W. Tsusaka, 2022. "Assessment of Forest Cover Changes in Vavuniya District, Sri Lanka: Implications for the Establishment of Subnational Forest Reference Emission Level," Land, MDPI, vol. 11(7), pages 1-25, July.
    6. Stech, Harlan & Peckham, Bruce & Pastor, John, 2012. "Enrichment in a general class of stoichiometric producer–consumer population growth models," Theoretical Population Biology, Elsevier, vol. 81(3), pages 210-222.
    7. Zhengkun Hu & Manuel Delgado-Baquerizo & Nicolas Fanin & Xiaoyun Chen & Yan Zhou & Guozhen Du & Feng Hu & Lin Jiang & Shuijin Hu & Manqiang Liu, 2024. "Nutrient-induced acidification modulates soil biodiversity-function relationships," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    8. Shulin Chen & Zhenghao Zhu & Xiaotong Liu & Li Yang, 2022. "Variation in Vegetation and Its Driving Force in the Pearl River Delta Region of China," IJERPH, MDPI, vol. 19(16), pages 1-15, August.
    9. Huang, Ze & Liu, Yu & Qiu, Kaiyang & López-Vicente, Manuel & Shen, Weibo & Wu, Gao-Lin, 2021. "Soil-water deficit in deep soil layers results from the planted forest in a semi-arid sandy land: Implications for sustainable agroforestry water management," Agricultural Water Management, Elsevier, vol. 254(C).
    10. Yao Zhang & Pierre Gentine & Xiangzhong Luo & Xu Lian & Yanlan Liu & Sha Zhou & Anna M. Michalak & Wu Sun & Joshua B. Fisher & Shilong Piao & Trevor F. Keenan, 2022. "Increasing sensitivity of dryland vegetation greenness to precipitation due to rising atmospheric CO2," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    11. Hertel, Thomas W. & Lobell, David B., 2014. "Agricultural adaptation to climate change in rich and poor countries: Current modeling practice and potential for empirical contributions," Energy Economics, Elsevier, vol. 46(C), pages 562-575.
    12. Yuhao Jin & Han Zhang & Yuchao Yan & Peitong Cong, 2020. "A Semi-Parametric Geographically Weighted Regression Approach to Exploring Driving Factors of Fractional Vegetation Cover: A Case Study of Guangdong," Sustainability, MDPI, vol. 12(18), pages 1-19, September.
    13. Henry R. Scharf & Ann M. Raiho & Sierra Pugh & Carl A. Roland & David K. Swanson & Sarah E. Stehn & Mevin B. Hooten, 2022. "Multivariate Bayesian clustering using covariate‐informed components with application to boreal vegetation sensitivity," Biometrics, The International Biometric Society, vol. 78(4), pages 1427-1440, December.
    14. Marcin Dębowski & Marta Kisielewska & Joanna Kazimierowicz & Aleksandra Rudnicka & Magda Dudek & Zdzisława Romanowska-Duda & Marcin Zieliński, 2020. "The effects of Microalgae Biomass Co-Substrate on Biogas Production from the Common Agricultural Biogas Plants Feedstock," Energies, MDPI, vol. 13(9), pages 1-13, May.
    15. Pazzagli, Pietro T. & Weiner, Jacob & Liu, Fulai, 2016. "Effects of CO2 elevation and irrigation regimes on leaf gas exchange, plant water relations, and water use efficiency of two tomato cultivars," Agricultural Water Management, Elsevier, vol. 169(C), pages 26-33.
    16. Cecilia Parracciani & Robert Buitenwerf & Jens-Christian Svenning, 2023. "Impacts of Climate Change on Vegetation in Kenya: Future Projections and Implications for Protected Areas," Land, MDPI, vol. 12(11), pages 1-20, November.
    17. Hasibuan, Abdul Muis & Gregg, Daniel & Stringer, Randy, 2020. "Accounting for diverse risk attitudes in measures of risk perceptions: A case study of climate change risk for small-scale citrus farmers in Indonesia," Land Use Policy, Elsevier, vol. 95(C).
    18. Shuang Liu & Xuefei Li & Long Chen & Qing Zhao & Chaohui Zhao & Xisheng Hu & Jian Li, 2022. "A New Approach to Investigate the Spatially Heterogeneous in the Cooling Effects of Landscape Pattern," Land, MDPI, vol. 11(2), pages 1-21, February.
    19. Yi-ping Fang & Fu-biao Zhu & Shu-hua Yi & Xiao-ping Qiu & Yong-jiang Ding, 2021. "Ecological carrying capacity of alpine grassland in the Qinghai–Tibet Plateau based on the structural dynamics method," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(8), pages 12550-12578, August.
    20. Thaís Pacheco Kasecker & Mario Barroso Ramos-Neto & Jose Maria Cardoso Silva & Fabio Rubio Scarano, 2018. "Ecosystem-based adaptation to climate change: defining hotspot municipalities for policy design and implementation in Brazil," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 23(6), pages 981-993, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:11:y:2022:i:10:p:1661-:d:925406. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.