IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v11y2022i10p1637-d923193.html
   My bibliography  Save this article

On Physical Urban Boundaries, Urban Sprawl, and Compactness Measurement: A Case Study of the Wen-Tai Region, China

Author

Listed:
  • Xiaoling Dai

    (School of Design and Architecture, Zhejiang University of Technology, Hangzhou 310024, China)

  • Jiafeng Jin

    (School of Design and Architecture, Zhejiang University of Technology, Hangzhou 310024, China)

  • Qianhu Chen

    (School of Design and Architecture, Zhejiang University of Technology, Hangzhou 310024, China)

  • Xin Fang

    (School of Design and Architecture, Zhejiang University of Technology, Hangzhou 310024, China)

Abstract

China’s rapid urbanization has been accompanied by serious urban sprawl. Instead of measuring the physical urban boundaries (PUBs), most of existing studies in China rely on yearbook statistics to describe the growth of urbanized area; therefore, the understanding of the actual form and quantity of urban sprawl are restrained. As the statistical unit is generally at or above the county level, these studies tend to omit the lower-level “larger towns”. This paper discusses the measurement of urban sprawl and compactness using multi-source data on the GIS platform through the case study of the Wen-Tai region in China. GlobeLand30 remote sensing image data, vector road network data, NPP/VIIRS nighttime light data, and points of interest (POIs) data are adopted. The new method enhances the identification of built-up areas in larger towns. Besides, the 2020s’ PUBs of this region, data for 2010 and 2000 are retraced to assess the urban expansion rate, and two approaches are used to discuss the urban growth pattern. Additionally, a compactness model is constructed from four dimensions, i.e., the compactness of external contour, accessibility of road network, land-use intensity, and functional diversity, by which a high-resolution visual analysis tool is created for the provincial government to monitor urban sprawl.

Suggested Citation

  • Xiaoling Dai & Jiafeng Jin & Qianhu Chen & Xin Fang, 2022. "On Physical Urban Boundaries, Urban Sprawl, and Compactness Measurement: A Case Study of the Wen-Tai Region, China," Land, MDPI, vol. 11(10), pages 1-24, September.
  • Handle: RePEc:gam:jlands:v:11:y:2022:i:10:p:1637-:d:923193
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/11/10/1637/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/11/10/1637/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wentao Niu & Ting Nie & Xiao Chen & Tianxi Wang & Jingyi Shi & Zhenzhen Xu & Hexiong Zhang, 2022. "Understanding the Corrective Effect of the Urban Growth Boundary Policy on Land Finance Dependence of Local Governments in China," IJERPH, MDPI, vol. 19(8), pages 1-31, April.
    2. Yu, Binbin, 2021. "Ecological effects of new-type urbanization in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    3. Steurer, Miriam & Bayr, Caroline, 2020. "Measuring urban sprawl using land use data," Land Use Policy, Elsevier, vol. 97(C).
    4. Miriam Steurer & Caroline Bayr, 2020. "Measuring Urban Sprawl using Land Use Data," Graz Economics Papers 2020-02, University of Graz, Department of Economics.
    5. Yangyang Wang & Yanjun Liu & Guolei Zhou & Zuopeng Ma & Hongri Sun & Hui Fu, 2022. "Coordinated Relationship between Compactness and Land-Use Efficiency in Shrinking Cities: A Case Study of Northeast China," Land, MDPI, vol. 11(3), pages 1-19, March.
    6. Akkelies van Nes, 2021. "Spatial Configurations and Walkability Potentials. Measuring Urban Compactness with Space Syntax," Sustainability, MDPI, vol. 13(11), pages 1-22, May.
    7. Xin Zhang & Jinghu Pan, 2021. "Spatiotemporal Pattern and Driving Factors of Urban Sprawl in China," Land, MDPI, vol. 10(11), pages 1-16, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gaoyuan Wang & Yixuan Wang & Yangli Li & Tian Chen, 2023. "Identification of Urban Clusters Based on Multisource Data—An Example of Three Major Urban Agglomerations in China," Land, MDPI, vol. 12(5), pages 1-25, May.
    2. Yedong Chen & Jiang Chang & Zixuan Li & Li Ming & Cankun Li & Cheng Li, 2023. "Coupling Coordination and Spatiotemporal Analysis of Urban Compactness and Land-Use Efficiency in Resource-Based Areas: A Case Study of Shanxi Province, China," Land, MDPI, vol. 12(9), pages 1-23, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yedong Chen & Jiang Chang & Zixuan Li & Li Ming & Cankun Li & Cheng Li, 2023. "Coupling Coordination and Spatiotemporal Analysis of Urban Compactness and Land-Use Efficiency in Resource-Based Areas: A Case Study of Shanxi Province, China," Land, MDPI, vol. 12(9), pages 1-23, August.
    2. Yangyang Wang & Yanjun Liu & Guolei Zhou & Zuopeng Ma & Hongri Sun & Hui Fu, 2022. "Coordinated Relationship between Compactness and Land-Use Efficiency in Shrinking Cities: A Case Study of Northeast China," Land, MDPI, vol. 11(3), pages 1-19, March.
    3. Ki Hwan Cho & Do-Hun Lee & Tae-Su Kim & Gab-Sue Jang, 2021. "Measurement of 30-Year Urban Expansion Using Spatial Entropy in Changwon and Gimhae, Korea," Sustainability, MDPI, vol. 13(2), pages 1-12, January.
    4. Wadjidou Boukari & Fenjie Long, 2023. "Reducing urban sprawl by optimizing housing production," Growth and Change, Wiley Blackwell, vol. 54(2), pages 529-549, June.
    5. Qiangyi Li & Lan Yang & Shuang Huang & Yangqing Liu & Chenyang Guo, 2023. "The Effects of Urban Sprawl on Electricity Consumption: Empirical Evidence from 283 Prefecture-Level Cities in China," Land, MDPI, vol. 12(8), pages 1-27, August.
    6. Wang, Yi & Wang, Huiping, 2023. "Spatial spillover effect of urban sprawl on total factor energy ecological efficiency: Evidence from 272 cities in China," Energy, Elsevier, vol. 273(C).
    7. Shang, Yuping & Xu, Jilan & Zhao, Xin, 2022. "Urban intensive land use and enterprise emission reduction: New micro-evidence from China towards COP26 targets," Resources Policy, Elsevier, vol. 79(C).
    8. Tikoudis, Ioannis & Farrow, Katherine & Mebiame, Rose Mba & Oueslati, Walid, 2022. "Beyond average population density: Measuring sprawl with density-allocation indicators," Land Use Policy, Elsevier, vol. 112(C).
    9. Tan, Ronghui & Liu, Pengcheng & Zhou, Kehao & He, Qingsong, 2022. "Evaluating the effectiveness of development-limiting boundary control policy: Spatial difference-in-difference analysis," Land Use Policy, Elsevier, vol. 120(C).
    10. Cengiz, Serhat & Görmüş, Sevgi & Oğuz, Dicle, 2022. "Analysis of the urban growth pattern through spatial metrics; Ankara City," Land Use Policy, Elsevier, vol. 112(C).
    11. Wei Pan & Jing Wang & Zhi Lu & Yurui Li, 2023. "Swelling Cities? Detecting China’s Urban Land Transition Based on Time Series Data," Land, MDPI, vol. 12(1), pages 1-12, January.
    12. Hoyong Kim & Donghyun Kim, 2022. "Changes in Urban Growth Patterns in Busan Metropolitan City, Korea: Population and Urbanized Areas," Land, MDPI, vol. 11(8), pages 1-18, August.
    13. Chen, Qianru & Wu, Manyu & Xie, Hualin, 2023. "Tillage conditions or social economy? An analysis of the dominant driving force of farmland marginalization from the farmers' perspective," Land Use Policy, Elsevier, vol. 133(C).
    14. Iváncsics, Vera & Filepné Kovács, Krisztina, 2021. "Analyses of new artificial surfaces in the catchment area of 12 Hungarian middle-sized towns between 1990 and 2018," Land Use Policy, Elsevier, vol. 109(C).
    15. Linlin Zhang & Xianfan Shu & Liang Zhang, 2023. "Urban Sprawl and Its Multidimensional and Multiscale Measurement," Land, MDPI, vol. 12(3), pages 1-17, March.
    16. Xu Yang & Xuan Zou & Xueqi Liu & Qixuan Li & Siqian Zou & Ming Li, 2023. "The Spatiotemporal Pattern and Driving Mechanism of Urban Sprawl in China’s Counties," Land, MDPI, vol. 12(3), pages 1-16, March.
    17. Lin, Boqiang & Zhou, Yicheng, 2021. "How does vertical fiscal imbalance affect the upgrading of industrial structure? Empirical evidence from China," Technological Forecasting and Social Change, Elsevier, vol. 170(C).
    18. Wang, Jianxiao & An, Qi & Zhao, Yue & Pan, Guangsheng & Song, Jie & Hu, Qinran & Tan, Chin-Woo, 2023. "Role of electrolytic hydrogen in smart city decarbonization in China," Applied Energy, Elsevier, vol. 336(C).
    19. Yuqi Zhu & Siwei Shen & Linyu Du & Jun Fu & Jian Zou & Lina Peng & Rui Ding, 2023. "Spatial and Temporal Interaction Coupling of Digital Economy, New-Type Urbanization and Land Ecology and Spatial Effects Identification: A Study of the Yangtze River Delta," Land, MDPI, vol. 12(3), pages 1-27, March.
    20. Wei Zhang & Jing Cheng & Xuemeng Liu & Zhangrong Zhu, 2023. "Heterogeneous industrial agglomeration, its coordinated development and total factor energy efficiency," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(6), pages 5511-5537, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:11:y:2022:i:10:p:1637-:d:923193. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.