IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v10y2021i8p866-d616575.html
   My bibliography  Save this article

Long-Term Dynamic of Land Reclamation and Its Impact on Coastal Flooding: A Case Study in Xiamen, China

Author

Listed:
  • Lilai Xu

    (Institute for Disaster Management and Reconstruction, Sichuan University, Chengdu 610065, China
    Research Center for Integrated Disaster Risk Reduction and Emergency Management, Sichuan University, Chengdu 610065, China)

  • Shengping Ding

    (Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China)

  • Vilas Nitivattananon

    (Asian Institute of Technology, Pathum Thani 12120, Thailand)

  • Jianxiong Tang

    (Xiamen Municipal Natural Resources and Planning Bureau, Xiamen 361012, China)

Abstract

While land reclaimed from the sea meets the land demand for coastal development, it simultaneously causes socio-economic systems to be prone to coastal flooding induced by storm surges and sea-level rise. Current studies have seldom linked reclamation with coastal flood impact assessment, hindering the provision of accurate information to support coastal flood risk management and adaptation. This study, using Xiamen, China as a case study, incorporates the spatiotemporal dynamics of reclamation into a coastal flood impact model, in order to investigate the long-term influence of reclamation activities on coastal flood inundation and the consequent exposure of the population to coastal flooding. We find that rapid population growth, continual economic development and urbanization drive a substantial logarithmic increase in coastal reclamation. Historical and future expansions of seaward land reclamation are found to cause dramatic surges in the expected annual inundation (EAI) and the expected annual population (EAP) exposed to coastal flooding. In Xiamen, EAI is estimated to increase by 440.2% from 1947 to 2035, owing to continuing land reclamation. Consequently, the population living in the flooded area has also increased sharply: the EAP of total population is estimated to rise from 0.8% in 1947 to 4.7% in 2035, where reclamation contributes over 80% of this increase. Moreover, a future 10 cm sea-level rise in 2035 will lead to extra 5.73% and 8.15% increases in EAI and EAP, respectively, and is expected to cause massive permanent submersion in the new reclamation zone. Our findings emphasize an integration of hard structures and nature-based solutions for building resilient coasts.

Suggested Citation

  • Lilai Xu & Shengping Ding & Vilas Nitivattananon & Jianxiong Tang, 2021. "Long-Term Dynamic of Land Reclamation and Its Impact on Coastal Flooding: A Case Study in Xiamen, China," Land, MDPI, vol. 10(8), pages 1-18, August.
  • Handle: RePEc:gam:jlands:v:10:y:2021:i:8:p:866-:d:616575
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/10/8/866/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/10/8/866/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Katie K. Arkema & Greg Guannel & Gregory Verutes & Spencer A. Wood & Anne Guerry & Mary Ruckelshaus & Peter Kareiva & Martin Lacayo & Jessica M. Silver, 2013. "Coastal habitats shield people and property from sea-level rise and storms," Nature Climate Change, Nature, vol. 3(10), pages 913-918, October.
    2. Vincent Viguié & Stéphane Hallegatte, 2012. "Trade-offs and synergies in urban climate policies," Nature Climate Change, Nature, vol. 2(5), pages 334-337, May.
    3. Barbara Neumann & Athanasios T Vafeidis & Juliane Zimmermann & Robert J Nicholls, 2015. "Future Coastal Population Growth and Exposure to Sea-Level Rise and Coastal Flooding - A Global Assessment," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-34, March.
    4. H. Apel & G. Aronica & H. Kreibich & A. Thieken, 2009. "Flood risk analyses—how detailed do we need to be?," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 49(1), pages 79-98, April.
    5. Delavane B. Diaz, 2016. "Estimating global damages from sea level rise with the Coastal Impact and Adaptation Model (CIAM)," Climatic Change, Springer, vol. 137(1), pages 143-156, July.
    6. Reza Marsooli & Ning Lin & Kerry Emanuel & Kairui Feng, 2019. "Climate change exacerbates hurricane flood hazards along US Atlantic and Gulf Coasts in spatially varying patterns," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    7. Yumei Ding & Hao Wei, 2017. "Modeling the impact of land reclamation on storm surges in Bohai Sea, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 85(1), pages 559-573, January.
    8. Erika E. Lentz & E. Robert Thieler & Nathaniel G. Plant & Sawyer R. Stippa & Radley M. Horton & Dean B. Gesch, 2016. "Evaluation of dynamic coastal response to sea-level rise modifies inundation likelihood," Nature Climate Change, Nature, vol. 6(7), pages 696-700, July.
    9. Jie Yin & Dapeng Yu & Zhane Yin & Jun Wang & Shiyuan Xu, 2013. "Modelling the combined impacts of sea-level rise and land subsidence on storm tides induced flooding of the Huangpu River in Shanghai, China," Climatic Change, Springer, vol. 119(3), pages 919-932, August.
    10. Jonathan D. Woodruff & Jennifer L. Irish & Suzana J. Camargo, 2013. "Coastal flooding by tropical cyclones and sea-level rise," Nature, Nature, vol. 504(7478), pages 44-52, December.
    11. James E. Neumann & Kerry A. Emanuel & Sai Ravela & Lindsay C. Ludwig & Caroleen Verly, 2015. "Risks of Coastal Storm Surge and the Effect of Sea Level Rise in the Red River Delta, Vietnam," Sustainability, MDPI, vol. 7(6), pages 1-20, May.
    12. Michalis I. Vousdoukas & Lorenzo Mentaschi & Evangelos Voukouvalas & Alessandra Bianchi & Francesco Dottori & Luc Feyen, 2018. "Climatic and socioeconomic controls of future coastal flood risk in Europe," Nature Climate Change, Nature, vol. 8(9), pages 776-780, September.
    13. Lai, Lawrence W.C. & Chau, K.W & Lorne, Frank T, 2019. "“Forgetting by not doing”: An institutional memory inquiry of forward planning for land production by reclamation," Land Use Policy, Elsevier, vol. 82(C), pages 796-806.
    14. Sousa, Carlos A.M. & Cunha, Maria Emília & Ribeiro, Laura, 2020. "Tracking 130 years of coastal wetland reclamation in Ria Formosa, Portugal: Opportunities for conservation and aquaculture," Land Use Policy, Elsevier, vol. 94(C).
    15. Zhang, Yuzhi & Chen, Ruishan & Wang, Yao, 2020. "Tendency of land reclamation in coastal areas of Shanghai from 1998 to 2015," Land Use Policy, Elsevier, vol. 91(C).
    16. Zhenguo Huang & Yongqiang Zong & Weiqiang Zhang, 2004. "Coastal Inundation due to Sea Level Rise in the Pearl River Delta, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 33(2), pages 247-264, October.
    17. Rebecca L. Morris & Anthony Boxshall & Stephen E. Swearer, 2020. "Climate-resilient coasts require diverse defence solutions," Nature Climate Change, Nature, vol. 10(6), pages 485-487, June.
    18. Richard T. T. Forman & Jianguo Wu, 2016. "Where to put the next billion people," Nature, Nature, vol. 537(7622), pages 608-611, September.
    19. Jun Wang & Wei Gao & Shiyuan Xu & Lizhong Yu, 2012. "Evaluation of the combined risk of sea level rise, land subsidence, and storm surges on the coastal areas of Shanghai, China," Climatic Change, Springer, vol. 115(3), pages 537-558, December.
    20. Makoto Tamura & Naoko Kumano & Mizuki Yotsukuri & Hiromune Yokoki, 2019. "Global assessment of the effectiveness of adaptation in coastal areas based on RCP/SSP scenarios," Climatic Change, Springer, vol. 152(3), pages 363-377, March.
    21. Scott Kulp & Benjamin H. Strauss, 2017. "Rapid escalation of coastal flood exposure in US municipalities from sea level rise," Climatic Change, Springer, vol. 142(3), pages 477-489, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. P. Subraelu & Abdel Azim Ebraheem & Mohsen Sherif & Ahmed Sefelnasr & M. M. Yagoub & Kakani Nageswara Rao, 2022. "Land in Water: The Study of Land Reclamation and Artificial Islands Formation in the UAE Coastal Zone: A Remote Sensing and GIS Perspective," Land, MDPI, vol. 11(11), pages 1-28, November.
    2. Zhiyi Lin & Minerva Singh, 2024. "Assessing Coastal Vulnerability and Evaluating the Effectiveness of Natural Habitats in Enhancing Coastal Resilience: A Case Study in Shanghai, China," Sustainability, MDPI, vol. 16(2), pages 1-23, January.
    3. Strain, E.M.A. & Kompas, T. & Boxshall, A. & Kelvin, J. & Swearer, S. & Morris, R.L., 2022. "Assessing the coastal protection services of natural mangrove forests and artificial rock revetments," Ecosystem Services, Elsevier, vol. 55(C).
    4. Qian Ke & Jiangshan Yin & Jeremy D. Bricker & Nicholas Savage & Erasmo Buonomo & Qinghua Ye & Paul Visser & Guangtao Dong & Shuai Wang & Zhan Tian & Laixiang Sun & Ralf Toumi & Sebastiaan N. Jonkman, 2021. "An integrated framework of coastal flood modelling under the failures of sea dikes: a case study in Shanghai," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(1), pages 671-703, October.
    5. Ramiro Parrado & Francesco Bosello & Elisa Delpiazzo & Jochen Hinkel & Daniel Lincke & Sally Brown, 2020. "Fiscal effects and the potential implications on economic growth of sea-level rise impacts and coastal zone protection," Climatic Change, Springer, vol. 160(2), pages 283-302, May.
    6. Haiju Hu & Gedun Chen & Rui Lin & Xing Huang & Zhidong Wei & Guoheng Chen, 2024. "An observation study of the combined river discharge and sea level impact on the duration of saltwater intrusion in Pearl River estuary–Modaomen waterway," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(1), pages 409-428, January.
    7. D. J. Rasmussen & Scott Kulp & Robert E. Kopp & Michael Oppenheimer & Benjamin H. Strauss, 2022. "Popular extreme sea level metrics can better communicate impacts," Climatic Change, Springer, vol. 170(3), pages 1-17, February.
    8. İsa Çal & Ayşen Ciravoğlu, 2024. "Determining Vulnerability Indicators of Buildings for Sea-Level Rise and Floods in Urban Coastal Areas," Sustainability, MDPI, vol. 17(1), pages 1-30, December.
    9. R. Dean Hardy & Bryan L. Nuse, 2016. "Global sea-level rise: weighing country responsibility and risk," Climatic Change, Springer, vol. 137(3), pages 333-345, August.
    10. Jan-Ludolf Merkens & Athanasios T. Vafeidis, 2018. "Using Information on Settlement Patterns to Improve the Spatial Distribution of Population in Coastal Impact Assessments," Sustainability, MDPI, vol. 10(9), pages 1-19, September.
    11. Gabriel Bachner & Daniel Lincke & Jochen Hinkel, 2022. "The macroeconomic effects of adapting to high-end sea-level rise via protection and migration," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    12. Xinmeng Shan & Jiahong Wen & Min Zhang & Luyang Wang & Qian Ke & Weijiang Li & Shiqiang Du & Yong Shi & Kun Chen & Banggu Liao & Xiande Li & Hui Xu, 2019. "Scenario-Based Extreme Flood Risk of Residential Buildings and Household Properties in Shanghai," Sustainability, MDPI, vol. 11(11), pages 1-18, June.
    13. Si Ha & Hirokazu Tatano & Nobuhito Mori & Toshio Fujimi & Xinyu Jiang, 2021. "Cost–benefit analysis of adaptation to storm surge due to climate change in Osaka Bay, Japan," Climatic Change, Springer, vol. 169(3), pages 1-20, December.
    14. Vincent T. M. Zelst & Jasper T. Dijkstra & Bregje K. Wesenbeeck & Dirk Eilander & Edward P. Morris & Hessel C. Winsemius & Philip J. Ward & Mindert B. Vries, 2021. "Cutting the costs of coastal protection by integrating vegetation in flood defences," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    15. Jacob Kim-Sherman & Lee Seltzer, 2024. "Clustering in Natural Disaster Damages," Staff Reports 1135, Federal Reserve Bank of New York.
    16. Marc J. S. Hensel & Brian R. Silliman & Johan Koppel & Enie Hensel & Sean J. Sharp & Sinead M. Crotty & Jarrett E. K. Byrnes, 2021. "A large invasive consumer reduces coastal ecosystem resilience by disabling positive species interactions," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    17. Lifen Xu & Xiangwei Meng & Xuegong Xu, 2014. "Natural hazard chain research in China: A review," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 70(2), pages 1631-1659, January.
    18. Tharani Gopalakrishnan & Md Kamrul Hasan & A. T. M. Sanaul Haque & Sadeeka Layomi Jayasinghe & Lalit Kumar, 2019. "Sustainability of Coastal Agriculture under Climate Change," Sustainability, MDPI, vol. 11(24), pages 1-24, December.
    19. Milad Bagheri & Zelina Zaiton Ibrahim & Mohd Fadzil Akhir & Wan Izatul Asma Wan Talaat & Bahareh Oryani & Shahabaldin Rezania & Isabelle D. Wolf & Amin Beiranvand Pour, 2021. "Developing a Climate Change Vulnerability Index for Coastal City Sustainability, Mitigation, and Adaptation: A Case Study of Kuala Terengganu, Malaysia," Land, MDPI, vol. 10(11), pages 1-27, November.
    20. Siqi Feng & Kexin Yang & Jianli Liu & Yvlu Yang & Luna Zhao & Jiahong Wen & Chengcheng Wan & Lijun Yan, 2023. "Multi-Hazard Population Exposure in Low-Elevation Coastal Zones of China from 1990 to 2020," Sustainability, MDPI, vol. 15(17), pages 1-18, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:10:y:2021:i:8:p:866-:d:616575. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.