IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2024i1p27-d1551901.html
   My bibliography  Save this article

Determining Vulnerability Indicators of Buildings for Sea-Level Rise and Floods in Urban Coastal Areas

Author

Listed:
  • İsa Çal

    (Building Research and Planning Program, Institute of Science and Technology, Faculty of Architecture, Yıldız Technical University, Istanbul 34349, Türkiye)

  • Ayşen Ciravoğlu

    (Faculty of Architecture, Yıldız Technical University, Istanbul 34349, Türkiye)

Abstract

Projected sea-level rise and floods due to climate change impacts are the hazards threatening urban coastal areas. In the literature on mitigation and adaptation, it is determined that studies in the field of architectural design for the assessment of risks and vulnerabilities to these hazards are not yet at a sufficient level. This study aims to determine the vulnerability indicators of buildings due to architectural design decisions in the urban coastal areas facing the risk of sea-level rise and flood hazards. In this direction, it is argued that the decisions that are taken regarding the building and its environment during the architectural design process can be interpreted as vulnerability indicators in vulnerability assessments of buildings to be made in the context of these hazards. In this context, an indicator-based assessment framework is proposed as a method of examining the vulnerability and climate resilience capacity of design practices in urban coastal areas. The first stage of the research methodology includes the results of a literature review to identify indicators of building vulnerability. In the second stage, these indicators were presented for expert opinions and analyzed with the Delphi method and an assessment framework was created. This assessment framework is designed to serve as a decision-making tool or checklist for decision makers, facilitating the integration of vulnerability indicators into the design, implementation, and retrofitting of buildings in urban coastal areas. Due to its hierarchical, yet flexible, and adaptable structure, it can be used by architects, urban planners, and policy makers in terms of assessing buildings and its environments so that actions for adaptation can be implemented.

Suggested Citation

  • İsa Çal & Ayşen Ciravoğlu, 2024. "Determining Vulnerability Indicators of Buildings for Sea-Level Rise and Floods in Urban Coastal Areas," Sustainability, MDPI, vol. 17(1), pages 1-30, December.
  • Handle: RePEc:gam:jsusta:v:17:y:2024:i:1:p:27-:d:1551901
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/1/27/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/1/27/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Andrew Macintosh & Anita Foerster & Jan McDonald, 2015. "Policy design, spatial planning and climate change adaptation: a case study from Australia," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 58(8), pages 1432-1453, August.
    2. Mrinal Kanti Sen & Subhrajit Dutta & Golam Kabir, 2021. "Flood Resilience of Housing Infrastructure Modeling and Quantification Using a Bayesian Belief Network," Sustainability, MDPI, vol. 13(3), pages 1-24, January.
    3. S. Balica & N. Wright & F. Meulen, 2012. "A flood vulnerability index for coastal cities and its use in assessing climate change impacts," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(1), pages 73-105, October.
    4. Elisavet Thoidou, 2021. "Spatial Planning and Climate Adaptation: Challenges of Land Protection in a Peri-Urban Area of the Mediterranean City of Thessaloniki," Sustainability, MDPI, vol. 13(8), pages 1-15, April.
    5. Vitor Baccarin Zanetti & Wilson Cabral De Sousa Junior & Débora M. De Freitas, 2016. "A Climate Change Vulnerability Index and Case Study in a Brazilian Coastal City," Sustainability, MDPI, vol. 8(8), pages 1-12, August.
    6. Jonathan D. Woodruff & Jennifer L. Irish & Suzana J. Camargo, 2013. "Coastal flooding by tropical cyclones and sea-level rise," Nature, Nature, vol. 504(7478), pages 44-52, December.
    7. Barbara Neumann & Athanasios T Vafeidis & Juliane Zimmermann & Robert J Nicholls, 2015. "Future Coastal Population Growth and Exposure to Sea-Level Rise and Coastal Flooding - A Global Assessment," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-34, March.
    8. Yanjie Zhang & Bilal M. Ayyub & Dongming Zhang & Hongwei Huang & Yalda Saadat, 2019. "Impact of Water Level Rise on Urban Infrastructures: Washington, DC, and Shanghai as Case Studies," Risk Analysis, John Wiley & Sons, vol. 39(12), pages 2718-2731, December.
    9. Sarah Percival & Richard Teeuw, 2019. "A methodology for urban micro-scale coastal flood vulnerability and risk assessment and mapping," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 97(1), pages 355-377, May.
    10. Miyuki Hino & Earthea Nance, 2021. "Five ways to ensure flood-risk research helps the most vulnerable," Nature, Nature, vol. 595(7865), pages 27-29, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gargiulo, Carmela & Battarra, Rosaria & Tremiterra, Maria Rosa, 2020. "Coastal areas and climate change: A decision support tool for implementing adaptation measures," Land Use Policy, Elsevier, vol. 91(C).
    2. Aishwarya Narendr & S. Vinay & Bharath Haridas Aithal & Sutapa Das, 2022. "Multi-dimensional parametric coastal flood risk assessment at a regional scale using GIS," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(7), pages 9569-9597, July.
    3. Fei Huo & Li Xu & Yanping Li & James S. Famiglietti & Zhenhua Li & Yuya Kajikawa & Fei Chen, 2021. "Using big data analytics to synthesize research domains and identify emerging fields in urban climatology," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 12(1), January.
    4. Qian Ke & Jiangshan Yin & Jeremy D. Bricker & Nicholas Savage & Erasmo Buonomo & Qinghua Ye & Paul Visser & Guangtao Dong & Shuai Wang & Zhan Tian & Laixiang Sun & Ralf Toumi & Sebastiaan N. Jonkman, 2021. "An integrated framework of coastal flood modelling under the failures of sea dikes: a case study in Shanghai," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(1), pages 671-703, October.
    5. Lucy Deba Enomah & Joni Downs & Nodjidoumde Mbaigoto & Beatrice Fonda & Mubarak Umar, 2024. "Flood risk assessment in Limbe (Cameroon) using a GIS weighed sum method," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(11), pages 29725-29744, November.
    6. Mediha Burcu Silaydin Aydin & Emine Duygu Kahraman, 2022. "Mitigation or adaptation, the determination of which strategy should be given priority for urban spatial development: the case study of central cities in Turkey," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(2), pages 1-23, February.
    7. Lilai Xu & Shengping Ding & Vilas Nitivattananon & Jianxiong Tang, 2021. "Long-Term Dynamic of Land Reclamation and Its Impact on Coastal Flooding: A Case Study in Xiamen, China," Land, MDPI, vol. 10(8), pages 1-18, August.
    8. Neiler Medina & Yared Abayneh Abebe & Arlex Sanchez & Zoran Vojinovic, 2020. "Assessing Socioeconomic Vulnerability after a Hurricane: A Combined Use of an Index-Based approach and Principal Components Analysis," Sustainability, MDPI, vol. 12(4), pages 1-31, February.
    9. Kai Yin & Sudong Xu & Xinghua Zhu & Wenrui Huang & Shuo Liu, 2021. "Estimation of spatial extreme sea levels in Xiamen seas by the quadrature JPM-OS method," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(1), pages 327-348, March.
    10. Julia Caon Araujo & Fabio Ferreira Dias, 2021. "Multicriterial method of AHP analysis for the identification of coastal vulnerability regarding the rise of sea level: case study in Ilha Grande Bay, Rio de Janeiro, Brazil," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(1), pages 53-72, May.
    11. George Halkos & Antonis Skouloudis & Chrisovalantis Malesios & Nikoleta Jones, 2020. "A Hierarchical Multilevel Approach in Assessing Factors Explaining Country-Level Climate Change Vulnerability," Sustainability, MDPI, vol. 12(11), pages 1-14, May.
    12. Xinyu Jiang & Nobuhito Mori & Hirokazu Tatano & Lijiao Yang, 2019. "Simulation-Based Exceedance Probability Curves to Assess the Economic Impact of Storm Surge Inundations due to Climate Change: A Case Study in Ise Bay, Japan," Sustainability, MDPI, vol. 11(4), pages 1-15, February.
    13. Sem J. Duijndam & W. J. Wouter Botzen & Liselotte C. Hagedoorn & Philip Bubeck & Toon Haer & My Pham & Jeroen C. J. H. Aerts, 2023. "Drivers of migration intentions in coastal Vietnam under increased flood risk from sea level rise," Climatic Change, Springer, vol. 176(2), pages 1-22, February.
    14. Philip Antwi-Agyei & Frank Baffour-Ata & Sarah Koomson & Nana Kwame Kyeretwie & Nana Barimah Nti & Afia Oforiwaa Owusu & Fukaiha Abdul Razak, 2023. "Drivers and coping mechanisms for floods: experiences of residents in urban Kumasi, Ghana," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(2), pages 2477-2500, March.
    15. Hossain, Mohammad Khalid & Meng, Qingmin, 2020. "A fine-scale spatial analytics of the assessment and mapping of buildings and population at different risk levels of urban flood," Land Use Policy, Elsevier, vol. 99(C).
    16. Giliberto Capano & Andrea Lippi, 2017. "How policy instruments are chosen: patterns of decision makers’ choices," Policy Sciences, Springer;Society of Policy Sciences, vol. 50(2), pages 269-293, June.
    17. Anirban Mukhopadhyay & Sugata Hazra & Debasish Mitra & C. Hutton & Abhra Chanda & Sandip Mukherjee, 2016. "Characterizing the multi-risk with respect to plausible natural hazards in the Balasore coast, Odisha, India: a multi-criteria analysis (MCA) appraisal," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(3), pages 1495-1513, February.
    18. Xinlu XIE & Yan ZHENG & Jiahua PAN & Hongjian ZHOU, 2018. "Urban Vulnerability and Adaptability to Climate Change: A Case Study of Cities in the Yangtze River Delta," Chinese Journal of Urban and Environmental Studies (CJUES), World Scientific Publishing Co. Pte. Ltd., vol. 6(01), pages 1-19, March.
    19. Islam, Md. Mofakkarul & Sarker, Md. Asaduzzaman & Al Mamun, Md. Abdullah & Mamun-ur-Rashid, Md. & Roy, Debashis, 2021. "Stepping Up versus Stepping Out: On the outcomes and drivers of two alternative climate change adaptation strategies of smallholders," World Development, Elsevier, vol. 148(C).
    20. Hui Xu & Junlong Gao & Xinchun Yu & Qianqian Qin & Shiqiang Du & Jiahong Wen, 2024. "Assessment of Rainstorm Waterlogging Disaster Risk in Rapidly Urbanizing Areas Based on Land Use Scenario Simulation: A Case Study of Jiangqiao Town in Shanghai, China," Land, MDPI, vol. 13(7), pages 1-18, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2024:i:1:p:27-:d:1551901. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.