IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v10y2021i7p733-d593098.html
   My bibliography  Save this article

Effect of Different Landscapes on Heat Load to Buildings

Author

Listed:
  • Ahmed Kanaan

    (Department of Mechanical and Aerospace Engineering, NMSU, Las Cruces, NM 88003, USA)

  • Bernd Leinauer

    (Department of Plant and Environmental Sciences, NMSU, Las Cruces, NM 88003, USA)

  • Matteo Serena

    (Department of Botany and Plant Sciences, University of California Riverside, Riverside, CA 92521, USA)

  • Elena Sevostianova

    (Department of Plant and Environmental Sciences, NMSU, Las Cruces, NM 88003, USA)

  • Burl Donaldson

    (Energy Analyst, LLC, Albuquerque, NM 87108, USA)

  • Igor Sevostianov

    (Department of Mechanical and Aerospace Engineering, NMSU, Las Cruces, NM 88003, USA)

Abstract

Strategies to conserve water have been implemented by many municipalities in the US Southwest to minimize quantities of water used for irrigating urban landscapes. Some of them encourage and even enforce homeowners to remove the turfgrass to reduce the irrigation water demands. This strategy not only ignores the numerous benefits derived from the turfgrasses but also fails to recognize the energy savings for the buildings surrounded by green landscapes. Quantitative analysis of the effect and importance of different types of landscapes on urban heat load and the subsequent energy consumption inside those buildings is of great practical need. Field experiments were conducted at New Mexico State University to assess the effect of different landscapes on heat transfer and ambient air and surface temperatures from June 2017 to October 2018. Two standard wood frame walls covered with stucco and surrounded by either Kentucky bluegrass or by hardscape were set up and equipped with sensors, measuring wall and air temperature, relative humidity, wind speed and the solar and far infrared radiation balance. Our results show that overall heat load from the xeric landscape is noticeably higher than the one from the grass landscape. Based on these data, we assessed the potential for energy savings by utilizing turfgrass landscaping.

Suggested Citation

  • Ahmed Kanaan & Bernd Leinauer & Matteo Serena & Elena Sevostianova & Burl Donaldson & Igor Sevostianov, 2021. "Effect of Different Landscapes on Heat Load to Buildings," Land, MDPI, vol. 10(7), pages 1-13, July.
  • Handle: RePEc:gam:jlands:v:10:y:2021:i:7:p:733-:d:593098
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/10/7/733/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/10/7/733/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhao, Dong-Xue & He, Bao-Jie & Johnson, Christine & Mou, Ben, 2015. "Social problems of green buildings: From the humanistic needs to social acceptance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1594-1609.
    2. He, Bao-jie & Ye, Miao & Yang, Li & Fu, Xiang-Ping & Mou, Ben & Griffy-Brown, Charla, 2014. "The combination of digital technology and architectural design to develop a process for enhancing energy-saving: The case of Maanshan China," Technology in Society, Elsevier, vol. 39(C), pages 77-87.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Patricio Pacheco & Eduardo Mera & Voltaire Fuentes, 2023. "Intensive Urbanization, Urban Meteorology and Air Pollutants: Effects on the Temperature of a City in a Basin Geography," IJERPH, MDPI, vol. 20(5), pages 1-20, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chenxi Li & Xing Gao & Bao-Jie He & Jingyao Wu & Kening Wu, 2019. "Coupling Coordination Relationships between Urban-industrial Land Use Efficiency and Accessibility of Highway Networks: Evidence from Beijing-Tianjin-Hebei Urban Agglomeration, China," Sustainability, MDPI, vol. 11(5), pages 1-23, March.
    2. Mahesti Okitasari & Ranjeeta Mishra & Masachika Suzuki, 2022. "Socio-Economic Drivers of Community Acceptance of Sustainable Social Housing: Evidence from Mumbai," Sustainability, MDPI, vol. 14(15), pages 1-17, July.
    3. Qunli Wu & Huaxing Lin, 2019. "Estimating Regional Shadow Prices of CO 2 in China: A Directional Environmental Production Frontier Approach," Sustainability, MDPI, vol. 11(2), pages 1-19, January.
    4. Li Zhang & Yue Fan & Xiaochun Yang & Jiahao Zhang, 2021. "Promoting Green Real Estate Development by Increasing Residents’ Satisfaction," Sustainability, MDPI, vol. 13(16), pages 1-13, August.
    5. Zhao, Dong-Xue & He, Bao-Jie & Johnson, Christine & Mou, Ben, 2015. "Social problems of green buildings: From the humanistic needs to social acceptance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1594-1609.
    6. Busse, Maria & Siebert, Rosemarie, 2018. "Acceptance studies in the field of land use—A critical and systematic review to advance the conceptualization of acceptance and acceptability," Land Use Policy, Elsevier, vol. 76(C), pages 235-245.
    7. repec:abr:oajaas:v:1:y:2019:i:2:p:48-52 is not listed on IDEAS
    8. Quangdung Tran & Sajjad Nazir & Tu-Hieu Nguyen & Ngoc-Khoa Ho & Tuan-Hai Dinh & Viet-Phuong Nguyen & Manh-Hung Nguyen & Quoc-Khanh Phan & The-Son Kieu, 2020. "Empirical Examination of Factors Influencing the Adoption of Green Building Technologies: The Perspective of Construction Developers in Developing Economies," Sustainability, MDPI, vol. 12(19), pages 1-28, September.
    9. Ke Guo & Yongbo Yuan, 2021. "Geographic Distribution and Influencing Factor Analysis of Green Residential Buildings in China," Sustainability, MDPI, vol. 13(21), pages 1-14, November.
    10. Mohammed Al-Surf & Ashraf Balabel & Mamdooh Alwetaishi & Ahmed Abdelhafiz & Usama Issa & Ibrahim Sharaky & Amal Shamseldin & Mosleh Al-Harthi, 2021. "Stakeholder’s Perspective on Green Building Rating Systems in Saudi Arabia: The Case of LEED, Mostadam, and the SDGs," Sustainability, MDPI, vol. 13(15), pages 1-25, July.
    11. D’Oca, Simona & Hong, Tianzhen & Langevin, Jared, 2018. "The human dimensions of energy use in buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 731-742.
    12. Giovanna Acampa & Lorenzo Diana & Giorgia Marino & Rossella Marmo, 2021. "Assessing the Transformability of Public Housing through BIM," Sustainability, MDPI, vol. 13(10), pages 1-24, May.
    13. Caraiman Adrian-Cosmin, 2022. "Economic And Financial Analysis During The Life Cycle Of Buildings In The Context Of Sustainable Development," Annals - Economy Series, Constantin Brancusi University, Faculty of Economics, vol. 4, pages 122-136, August.
    14. Robert Bucoń & Agata Czarnigowska, 2021. "Sequential Model for Long-Term Planning of Building Renewal and Capital Improvement," Sustainability, MDPI, vol. 13(17), pages 1-22, August.
    15. Wen Li & Yicheng Ye & Nanyan Hu & Xianhua Wang & Qihu Wang, 2019. "Real-Time Warning and Risk Assessment of Tailings Dam Disaster Status Based on Dynamic Hierarchy-Grey Relation Analysis," Complexity, Hindawi, vol. 2019, pages 1-14, April.
    16. Qi Xu & Saffa Riffat & Shihao Zhang, 2019. "Review of Heat Recovery Technologies for Building Applications," Energies, MDPI, vol. 12(7), pages 1-22, April.
    17. Sadaf Dalirazar & Zahra Sabzi, 2022. "Barriers to sustainable development: Critical social factors influencing the sustainable building development based on Swedish experts' perspectives," Sustainable Development, John Wiley & Sons, Ltd., vol. 30(6), pages 1963-1974, December.
    18. Kosorić, Vesna & Huang, Huajing & Tablada, Abel & Lau, Siu-Kit & Tan, Hugh T.W., 2019. "Survey on the social acceptance of the productive façade concept integrating photovoltaic and farming systems in high-rise public housing blocks in Singapore," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 197-214.
    19. Liu, Zhijian & Liu, Yuanwei & He, Bao-Jie & Xu, Wei & Jin, Guangya & Zhang, Xutao, 2019. "Application and suitability analysis of the key technologies in nearly zero energy buildings in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 329-345.
    20. Yelly Kwesy Lawluvy & Albert Agbeko Ahiadu & Olivia Kwakyewaa Ntim, 2022. "Willingness To Pay For Green Buildings In Ghana: The Impact Of Benefit Sensitisation," AfRES 2022-032, African Real Estate Society (AfRES).
    21. Wei Li & Bao-Jie He & Jinda Qi & Jianwen Dong, 2018. "Water Conservation Scenic Spots in China: Developing the Tourism Potential of Hydraulic Projects and Water Resources," Sustainability, MDPI, vol. 10(12), pages 1-20, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:10:y:2021:i:7:p:733-:d:593098. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.