IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v10y2021i2p191-d498984.html
   My bibliography  Save this article

An Assessment of Forest Cover Change and Its Driving Forces in the Syrian Coastal Region during a Period of Conflict, 2010 to 2020

Author

Listed:
  • Mohamed Ali Mohamed

    (Department of Geography, Humboldt University of Berlin, 10099 Berlin, Germany)

Abstract

In Syria, 76% of the forests are located in the Syrian coast region. This region is witnessing a rapid depletion of forest cover during the conflict that broke out in mid-2011. To date, there have been no studies providing accurate, reliable, and comprehensive data on the qualitative and quantitative aspects of forest change dynamics and the underlying drivers behind this change. In this study, changes in the dynamics of forest cover and its density between 2010 and 2020 were detected and analyzed using multi-temporal Landsat images. This study also analyzed the relationship between changes in forest cover and selected physical and socio-demographic variables associated with the drivers of change. The results revealed that the study area witnessed a significant decrease in the total forest area (31,116.0 ha, 24.3%) accompanied by a considerable decrease in density, as the area of dense forests decreased by 11,778.0 ha (9.2%) between 2010 and 2020. The change in forest cover was driven by a variety of different factors related to the conflict. The main drivers were changes in economic and social activities, extensive exploitation of forest resources, frequent forest fires, and weakness of state institutions in managing natural resources and environmental development. Forest loss was also linked to the expansion of cultivated area, increase in population and urban area. Fluctuating climatic conditions are not a major driver of forest cover dynamics in the study area. This decrease in forest area and density reflects sharp shifts in the natural environment during the study period. In the foreseeable future, it is not possible to determine whether the changes in forest cover and its density will be permanent or temporary. Monitoring changes in forest cover and understanding the driving forces behind this change provides quantitative and qualitative information to improve planning and decision-making. The results of this study may draw the attention of decision-makers to take immediate actions and identify areas of initial intervention to protect current the forests of the Syrian coast region from loss and degradation, as well as develop policies for the sustainable management of forest resources in the long term.

Suggested Citation

  • Mohamed Ali Mohamed, 2021. "An Assessment of Forest Cover Change and Its Driving Forces in the Syrian Coastal Region during a Period of Conflict, 2010 to 2020," Land, MDPI, vol. 10(2), pages 1-25, February.
  • Handle: RePEc:gam:jlands:v:10:y:2021:i:2:p:191-:d:498984
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/10/2/191/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/10/2/191/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Negasi Solomon & Hadgu Hishe & Ted Annang & Opoku Pabi & Isaac K Asante & Emiru Birhane, 2018. "Forest Cover Change, Key Drivers and Community Perception in Wujig Mahgo Waren Forest of Northern Ethiopia," Land, MDPI, vol. 7(1), pages 1-16, March.
    2. Mohamed Ali Mohamed, 2020. "Classification of Landforms for Digital Soil Mapping in Urban Areas Using LiDAR Data Derived Terrain Attributes: A Case Study from Berlin, Germany," Land, MDPI, vol. 9(9), pages 1-26, September.
    3. Willie Doaemo & Midhun Mohan & Esmaeel Adrah & Shruthi Srinivasan & Ana Paula Dalla Corte, 2020. "Exploring Forest Change Spatial Patterns in Papua New Guinea: A Pilot Study in the Bumbu River Basin," Land, MDPI, vol. 9(9), pages 1-18, August.
    4. Lars Gamfeldt & Tord Snäll & Robert Bagchi & Micael Jonsson & Lena Gustafsson & Petter Kjellander & María C. Ruiz-Jaen & Mats Fröberg & Johan Stendahl & Christopher D. Philipson & Grzegorz Mikusiński , 2013. "Higher levels of multiple ecosystem services are found in forests with more tree species," Nature Communications, Nature, vol. 4(1), pages 1-8, June.
    5. Tola Gemechu Ango & Kristoffer Hylander & Lowe Börjeson, 2020. "Processes of Forest Cover Change since 1958 in the Coffee-Producing Areas of Southwest Ethiopia," Land, MDPI, vol. 9(8), pages 1-29, August.
    6. Susan Ngwira & Teiji Watanabe, 2019. "An Analysis of the Causes of Deforestation in Malawi: A Case of Mwazisi," Land, MDPI, vol. 8(3), pages 1-15, March.
    7. Mohamed Ali Mohamed & Julian Anders & Christoph Schneider, 2020. "Monitoring of Changes in Land Use/Land Cover in Syria from 2010 to 2018 Using Multitemporal Landsat Imagery and GIS," Land, MDPI, vol. 9(7), pages 1-31, July.
    8. Chittana Phompila & Megan Lewis & Bertram Ostendorf & Kenneth Clarke, 2017. "Forest Cover Changes in Lao Tropical Forests: Physical and Socio-Economic Factors are the Most Important Drivers," Land, MDPI, vol. 6(2), pages 1-14, March.
    9. Pradeep Baral & Yali Wen & Nadia Nora Urriola, 2018. "Forest Cover Changes and Trajectories in a Typical Middle Mountain Watershed of Western Nepal," Land, MDPI, vol. 7(2), pages 1-21, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nebras Khadour & Nawarah Al Basha & Máté Sárospataki & Albert Fekete, 2021. "Correlation between Land Use and the Transformation of Rural Housing Model in the Coastal Region of Syria," Sustainability, MDPI, vol. 13(8), pages 1-15, April.
    2. Hazem Ghassan Abdo & Hussein Almohamad & Ahmed Abdullah Al Dughairi & Motirh Al-Mutiry, 2022. "GIS-Based Frequency Ratio and Analytic Hierarchy Process for Forest Fire Susceptibility Mapping in the Western Region of Syria," Sustainability, MDPI, vol. 14(8), pages 1-20, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Belete Debebe & Feyera Senbeta & Ermias Teferi & Dawit Diriba & Demel Teketay, 2023. "Analysis of Forest Cover Change and Its Drivers in Biodiversity Hotspot Areas of the Semien Mountains National Park, Northwest Ethiopia," Sustainability, MDPI, vol. 15(4), pages 1-22, February.
    2. Skutsch, Margaret & Turnhout, Esther, 2020. "REDD+: If communities are the solution, what is the problem?," World Development, Elsevier, vol. 130(C).
    3. Toru Sakai & Emiru Birhane & Buruh Abebe & Destaalem Gebremeskel, 2021. "Applicability of Structure-from-Motion Photogrammetry on Forest Measurement in the Northern Ethiopian Highlands," Sustainability, MDPI, vol. 13(9), pages 1-14, May.
    4. Kamal Hussain & Fazlur Rahman & Ihsan Ullah & Zahir Ahmad & Udo Schickhoff, 2022. "Assessing the Impacts of Population Growth and Roads on Forest Cover: A Temporal Approach to Reconstruct the Deforestation Process in District Kurram, Pakistan, since 1972," Land, MDPI, vol. 11(6), pages 1-23, May.
    5. Noel Perceval Assogba & Daowei Zhang, 2020. "An Economic Analysis of Tropical Forest Resource Conservation in a Protected Area," Sustainability, MDPI, vol. 12(14), pages 1-12, July.
    6. Innangi, Michele & Balestrieri, Rosario & Danise, Tiziana & d’Alessandro, Francesco & Fioretto, Antonietta, 2019. "From soil to bird community: A Partial Least Squares approach to investigate a natural wooded area surrounded by urban patchwork (Astroni crater, southern Italy)," Ecological Modelling, Elsevier, vol. 394(C), pages 1-10.
    7. Changda Liu & Jie Li & Qiuhua Tang & Jiawei Qi & Xinghua Zhou, 2022. "Classifying the Nunivak Island Coastline Using the Random Forest Integration of the Sentinel-2 and ICESat-2 Data," Land, MDPI, vol. 11(2), pages 1-15, February.
    8. Zanchi, Giuliana & Belyazid, Salim & Akselsson, Cecilia & Yu, Lin, 2014. "Modelling the effects of management intensification on multiple forest services: a Swedish case study," Ecological Modelling, Elsevier, vol. 284(C), pages 48-59.
    9. Sumaryanto & Sri Hery Susilowati & Fitri Nurfatriani & Herlina Tarigan & Erwidodo & Tahlim Sudaryanto & Henri Wira Perkasa, 2022. "Determinants of Farmers’ Behavior towards Land Conservation Practices in the Upper Citarum Watershed in West Java, Indonesia," Land, MDPI, vol. 11(10), pages 1-21, October.
    10. Paloma Ruiz-Benito & Jaime Madrigal-González & Sarah Young & Pierre Mercatoris & Liam Cavin & Tsurng-Juhn Huang & Jan-Chang Chen & Alistair S Jump, 2015. "Climatic Stress during Stand Development Alters the Sign and Magnitude of Age-Related Growth Responses in a Subtropical Mountain Pine," PLOS ONE, Public Library of Science, vol. 10(5), pages 1-18, May.
    11. Rachele Venanzi & Francesco Latterini & Walter Stefanoni & Damiano Tocci & Rodolfo Picchio, 2022. "Variations of Soil Physico-Chemical and Biological Features after Logging Using Two Different Ground-Based Extraction Methods in a Beech High Forest—A Case Study," Land, MDPI, vol. 11(3), pages 1-14, March.
    12. Kallio, Maarit Helena & Hogarth, Nicholas John & Moeliono, Moira & Brockhaus, Maria & Cole, Robert & Waty Bong, Indah & Wong, Grace Yee, 2019. "The colour of maize: Visions of green growth and farmers perceptions in northern Laos," Land Use Policy, Elsevier, vol. 80(C), pages 185-194.
    13. Jacqueline Loos & Henrik Von Wehrden, 2018. "Beyond Biodiversity Conservation: Land Sharing Constitutes Sustainable Agriculture in European Cultural Landscapes," Sustainability, MDPI, vol. 10(5), pages 1-11, May.
    14. Dilnessa Gashaye & Zerihun Woldu & Sileshi Nemomissa & Enyew Adgo, 2023. "The Land-Use and Land-Cover Changes in the Este District, South Gondar Zone, Northwestern Ethiopia, in the Last Four Decades (the 1980s to 2020s)," Land, MDPI, vol. 12(9), pages 1-18, August.
    15. Morag F. Macpherson & Adam Kleczkowski & John R. Healey & Chris Quine & Nick Hanley, 2016. "The Effects of Invasive Pests and Diseases on Strategies for Forest Diversification," Discussion Papers in Environment and Development Economics 2016-11, University of St. Andrews, School of Geography and Sustainable Development.
    16. Yu Feng & Zhenzhong Zeng & Timothy D. Searchinger & Alan D. Ziegler & Jie Wu & Dashan Wang & Xinyue He & Paul R. Elsen & Philippe Ciais & Rongrong Xu & Zhilin Guo & Liqing Peng & Yiheng Tao & Dominick, 2022. "Doubling of annual forest carbon loss over the tropics during the early twenty-first century," Nature Sustainability, Nature, vol. 5(5), pages 444-451, May.
    17. Chen, Si & Shahi, Chander & Chen, Han Y.H. & Kumar, Praveen & Ma, Zilong & McLaren, Brian, 2018. "Trade-offs and Synergies Between Economic Gains and Plant Diversity Across a Range of Management Alternatives in Boreal Forests," Ecological Economics, Elsevier, vol. 151(C), pages 162-172.
    18. Zhufeng Hou & Guanghui Lv & Lamei Jiang, 2021. "Functional Diversity Can Predict Ecosystem Functions Better Than Dominant Species: The Case of Desert Plants in the Ebinur Lake Basin," Sustainability, MDPI, vol. 13(5), pages 1-13, March.
    19. Kolo, Horst & Kindu, Mengistie & Knoke, Thomas, 2020. "Optimizing forest management for timber production, carbon sequestration and groundwater recharge," Ecosystem Services, Elsevier, vol. 44(C).
    20. Helmut J. Geist, 2021. "Tobacco and Deforestation Revisited. How to Move towards a Global Land-Use Transition?," Sustainability, MDPI, vol. 13(16), pages 1-21, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:10:y:2021:i:2:p:191-:d:498984. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.