IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v10y2021i2p100-d485249.html
   My bibliography  Save this article

Shoreline Dynamics in East Java Province, Indonesia, from 2000 to 2019 Using Multi-Sensor Remote Sensing Data

Author

Listed:
  • Sanjiwana Arjasakusuma

    (Department of Geographic Information Science, Faculty of Geography, Gadjah Mada University, Bulaksumur, Yogyakarta 55281, Indonesia)

  • Sandiaga Swahyu Kusuma

    (Department of Geographic Information Science, Faculty of Geography, Gadjah Mada University, Bulaksumur, Yogyakarta 55281, Indonesia)

  • Siti Saringatin

    (Department of Geographic Information Science, Faculty of Geography, Gadjah Mada University, Bulaksumur, Yogyakarta 55281, Indonesia)

  • Pramaditya Wicaksono

    (Department of Geographic Information Science, Faculty of Geography, Gadjah Mada University, Bulaksumur, Yogyakarta 55281, Indonesia)

  • Bachtiar Wahyu Mutaqin

    (Department of Environmental Geography, Faculty of Geography, Gadjah Mada University, Bulaksumur, Yogyakarta 55281, Indonesia)

  • Raihan Rafif

    (Department of Geographic Information Science, Faculty of Geography, Gadjah Mada University, Bulaksumur, Yogyakarta 55281, Indonesia)

Abstract

Coastal regions are one of the most vulnerable areas to the effects of global warming, which is accompanied by an increase in mean sea level and changing shoreline configurations. In Indonesia, the socioeconomic importance of coastal regions where the most populated cities are located is high. However, shoreline changes in Indonesia are relatively understudied. In particular, detailed monitoring with remote sensing data is lacking despite the abundance of datasets and the availability of easily accessible cloud computing platforms such as the Google Earth Engine that are able to perform multi-temporal and multi-sensor mapping. Our study aimed to assess shoreline changes in East Java Province Indonesia from 2000 to 2019 using variables derived from a multi-sensor combination of optical remote sensing data (Landsat-7 ETM and Landsat-8 OLI) and radar data (ALOS Palsar and Sentinel-1 data). Random forest and GMO maximum entropy (GMO-Maxent) accuracy was assessed for the classification of land and water, and the land polygons from the best algorithm were used for deriving shorelines. In addition, shoreline changes were quantified using Digital Shoreline Analysis System (DSAS). Our results showed that coastal accretion is more profound than coastal erosion in East Java Province with average rates of change of +4.12 (end point rate, EPR) and +4.26 m/year (weighted linear rate, WLR) from 2000 to 2019. In addition, some parts of the shorelines in the study area experienced massive changes, especially in the deltas of the Bengawan Solo and Brantas/Porong river with rates of change (EPR) between −87.44 to +89.65 and −18.98 to +111.75 m/year, respectively. In the study areas, coastal erosion happened mostly in the mangrove and aquaculture areas, while the accreted areas were used mostly as aquaculture and mangrove areas. The massive shoreline changes in this area require better monitoring to mitigate the potential risks of coastal erosion and to better manage coastal sedimentation.

Suggested Citation

  • Sanjiwana Arjasakusuma & Sandiaga Swahyu Kusuma & Siti Saringatin & Pramaditya Wicaksono & Bachtiar Wahyu Mutaqin & Raihan Rafif, 2021. "Shoreline Dynamics in East Java Province, Indonesia, from 2000 to 2019 Using Multi-Sensor Remote Sensing Data," Land, MDPI, vol. 10(2), pages 1-17, January.
  • Handle: RePEc:gam:jlands:v:10:y:2021:i:2:p:100-:d:485249
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/10/2/100/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/10/2/100/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Stijn Temmerman & Patrick Meire & Tjeerd J. Bouma & Peter M. J. Herman & Tom Ysebaert & Huib J. De Vriend, 2013. "Ecosystem-based coastal defence in the face of global change," Nature, Nature, vol. 504(7478), pages 79-83, December.
    2. Ye, Guanqiong & Chou, Loke Ming & Yang, Shengyun & Wu, Jiaping & Liu, Pei & Jin, Changwei, 2015. "Is integrated coastal management an effective framework for promoting coastal sustainability in China’s coastal cities?," Marine Policy, Elsevier, vol. 56(C), pages 48-55.
    3. Ali Masria & Kazuo Nadaoka & Abdelazim Negm & Moheb Iskander, 2015. "Detection of Shoreline and Land Cover Changes around Rosetta Promontory, Egypt, Based on Remote Sensing Analysis," Land, MDPI, vol. 4(1), pages 1-15, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Changda Liu & Jie Li & Qiuhua Tang & Jiawei Qi & Xinghua Zhou, 2022. "Classifying the Nunivak Island Coastline Using the Random Forest Integration of the Sentinel-2 and ICESat-2 Data," Land, MDPI, vol. 11(2), pages 1-15, February.
    2. Muh Aris Marfai & Ratih Winastuti & Arief Wicaksono & Bachtiar W. Mutaqin, 2022. "Coastal morphodynamic analysis in Buleleng Regency, Bali—Indonesia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(1), pages 995-1017, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hesham M. El-Asmar & Maysa M. N. Taha, 2022. "Monitoring Coastal Changes and Assessing Protection Structures at the Damietta Promontory, Nile Delta, Egypt, to Secure Sustainability in the Context of Climate Changes," Sustainability, MDPI, vol. 14(22), pages 1-19, November.
    2. Gerald Schernewski & Lars Niklas Voeckler & Leon Lambrecht & Esther Robbe & Johanna Schumacher, 2022. "Building with Nature—Ecosystem Service Assessment of Coastal-Protection Scenarios," Sustainability, MDPI, vol. 14(23), pages 1-18, November.
    3. Lam Thi Mai Huynh & Jie Su & Quanli Wang & Lindsay C. Stringer & Adam D. Switzer & Alexandros Gasparatos, 2024. "Meta-analysis indicates better climate adaptation and mitigation performance of hybrid engineering-natural coastal defence measures," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    4. Pérez-Maqueo, Octavio & Martínez, M. Luisa & Cóscatl Nahuacatl, Rosendo, 2017. "Is the protection of beach and dune vegetation compatible with tourism?," Tourism Management, Elsevier, vol. 58(C), pages 175-183.
    5. Reguero, Borja G. & Beck, Michael W. & Schmid, David & Stadtmüller, Daniel & Raepple, Justus & Schüssele, Stefan & Pfliegner, Kerstin, 2020. "Financing coastal resilience by combining nature-based risk reduction with insurance," Ecological Economics, Elsevier, vol. 169(C).
    6. Zhiyi Lin & Minerva Singh, 2024. "Assessing Coastal Vulnerability and Evaluating the Effectiveness of Natural Habitats in Enhancing Coastal Resilience: A Case Study in Shanghai, China," Sustainability, MDPI, vol. 16(2), pages 1-23, January.
    7. Álvarez, Xana & Gómez-Rúa, María & Vidal-Puga, Juan, 2019. "Risk prevention of land flood: A cooperative game theory approach," MPRA Paper 91515, University Library of Munich, Germany.
    8. Roche, R.C. & Walker-Springett, K. & Robins, P.E. & Jones, J. & Veneruso, G. & Whitton, T.A. & Piano, M. & Ward, S.L. & Duce, C.E. & Waggitt, J.J. & Walker-Springett, G.R. & Neill, S.P. & Lewis, M.J. , 2016. "Research priorities for assessing potential impacts of emerging marine renewable energy technologies: Insights from developments in Wales (UK)," Renewable Energy, Elsevier, vol. 99(C), pages 1327-1341.
    9. Takahiro Tsuge & Yasushi Shoji & Koichi Kuriyama & Ayumi Onuma, 2022. "Using a Choice Experiment to Understand Preferences for Disaster Risk Reduction with Uncertainty: A Case Study in Japan," Sustainability, MDPI, vol. 14(8), pages 1-17, April.
    10. Strain, E.M.A. & Kompas, T. & Boxshall, A. & Kelvin, J. & Swearer, S. & Morris, R.L., 2022. "Assessing the coastal protection services of natural mangrove forests and artificial rock revetments," Ecosystem Services, Elsevier, vol. 55(C).
    11. Carus, Jana & Heuner, Maike & Paul, Maike & Schröder, Boris, 2017. "Which factors and processes drive the spatio-temporal dynamics of brackish marshes?—Insights from development and parameterisation of a mechanistic vegetation model," Ecological Modelling, Elsevier, vol. 363(C), pages 122-136.
    12. Maria Fabrizia Clemente & Valeria D’Ambrosio & Ferdinando Di Martino & Vittorio Miraglia, 2023. "Quantify the Contribution of Nature-Based Solutions in Reducing the Impacts of Hydro-Meteorological Hazards in the Urban Environment: A Case Study in Naples, Italy," Land, MDPI, vol. 12(3), pages 1-20, February.
    13. Priscila Celebrini de Oliveira Campos & Tainá da Silva Rocha Paz & Letícia Lenz & Yangzi Qiu & Camila Nascimento Alves & Ana Paula Roem Simoni & José Carlos Cesar Amorim & Gilson Brito Alves Lima & Ma, 2020. "Multi-Criteria Decision Method for Sustainable Watercourse Management in Urban Areas," Sustainability, MDPI, vol. 12(16), pages 1-22, August.
    14. Nathalie Long & Cécile Bazart & Hélène Rey-Valette, 2022. "Inequalities and solidarities: interactions and impacts of sea-level-rise adaptation policies," Post-Print hal-03597828, HAL.
    15. Arun Rana & Qinhan Zhu & Annette Detken & Karina Whalley & Christelle Castet, 2022. "Strengthening climate-resilient development and transformation in Viet Nam," Climatic Change, Springer, vol. 170(1), pages 1-23, January.
    16. Convertino, Matteo & Annis, Antonio & Nardi, Fernando, 2019. "Information-theoretic Portfolio Decision Model for Optimal Flood Management," Earth Arxiv k5aut, Center for Open Science.
    17. Su-Ping Liu & Bin Shi & Kai Gu & Cheng-Cheng Zhang & Ji-Long Yang & Song Zhang & Peng Yang, 2020. "Land subsidence monitoring in sinking coastal areas using distributed fiber optic sensing: a case study," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(3), pages 3043-3061, September.
    18. Tran, Dung Duc & van Halsema, Gerardo & Hellegers, Petra J.G.J. & Hoang, Long Phi & Ludwig, Fulco, 2019. "Long-term sustainability of the Vietnamese Mekong Delta in question: An economic assessment of water management alternatives," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    19. Siddharth Narayan & Michael W Beck & Borja G Reguero & Iñigo J Losada & Bregje van Wesenbeeck & Nigel Pontee & James N Sanchirico & Jane Carter Ingram & Glenn-Marie Lange & Kelly A Burks-Copes, 2016. "The Effectiveness, Costs and Coastal Protection Benefits of Natural and Nature-Based Defences," PLOS ONE, Public Library of Science, vol. 11(5), pages 1-17, May.
    20. Wiebe P. de Boer & Jill H. Slinger & Arno K. wa Kangeri & Heleen S.I. Vreugdenhil & Poonam Taneja & Kwasi Appeaning Addo & Tiedo Vellinga, 2019. "Identifying Ecosystem-Based Alternatives for the Design of a Seaport’s Marine Infrastructure: The Case of Tema Port Expansion in Ghana," Sustainability, MDPI, vol. 11(23), pages 1-19, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:10:y:2021:i:2:p:100-:d:485249. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.