IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v10y2021i12p1384-d702177.html
   My bibliography  Save this article

Crop Intensity Mapping Using Dynamic Time Warping and Machine Learning from Multi-Temporal PlanetScope Data

Author

Listed:
  • Raihan Rafif

    (Department of Geographic Information Science, Faculty of Geography, Universitas Gadjah Mada, Yogyakarta 55223, Indonesia)

  • Sandiaga Swahyu Kusuma

    (Department of Geographic Information Science, Faculty of Geography, Universitas Gadjah Mada, Yogyakarta 55223, Indonesia)

  • Siti Saringatin

    (Department of Geographic Information Science, Faculty of Geography, Universitas Gadjah Mada, Yogyakarta 55223, Indonesia)

  • Giara Iman Nanda

    (Department of Geographic Information Science, Faculty of Geography, Universitas Gadjah Mada, Yogyakarta 55223, Indonesia)

  • Pramaditya Wicaksono

    (Department of Geographic Information Science, Faculty of Geography, Universitas Gadjah Mada, Yogyakarta 55223, Indonesia)

  • Sanjiwana Arjasakusuma

    (Department of Geographic Information Science, Faculty of Geography, Universitas Gadjah Mada, Yogyakarta 55223, Indonesia)

Abstract

Crop intensity information describes the productivity and the sustainability of agricultural land. This information can be used to determine which agricultural lands should be prioritized for intensification or protection. Time-series data from remote sensing can be used to derive the crop intensity information; however, this application is limited when using medium to coarse resolution data. This study aims to use 3.7 m-PlanetScope™ Dove constellation data, which provides daily observations, to map crop intensity information for agricultural land in Magelang District, Indonesia. Two-stage histogram matching, before and after the monthly median composites, is used to normalize the PlanetScope data and to generate monthly data to map crop intensity information. Several methods including Time-Weighted Dynamic Time Warping (TWDTW) and the machine-learning algorithms: Random Forest (RF), Extremely Randomized Trees (ET), and Extreme Gradient Boosting (XGB) are employed in this study, and the results are validated using field survey data. Our results show that XGB generated the highest overall accuracy (OA) (95 ± 4%), followed by RF (92 ± 5%), ET (87 ± 6%), and TWDTW (81 ± 8%), for mapping four-classes of cropping intensity, with the near-infrared (NIR) band being the most important variable for identifying cropping intensity. This study demonstrates the potential of PlanetScope data for the production of cropping intensity maps at detailed resolutions.

Suggested Citation

  • Raihan Rafif & Sandiaga Swahyu Kusuma & Siti Saringatin & Giara Iman Nanda & Pramaditya Wicaksono & Sanjiwana Arjasakusuma, 2021. "Crop Intensity Mapping Using Dynamic Time Warping and Machine Learning from Multi-Temporal PlanetScope Data," Land, MDPI, vol. 10(12), pages 1-18, December.
  • Handle: RePEc:gam:jlands:v:10:y:2021:i:12:p:1384-:d:702177
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/10/12/1384/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/10/12/1384/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kursa, Miron B. & Rudnicki, Witold R., 2010. "Feature Selection with the Boruta Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 36(i11).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tong, Jianfeng & Liu, Zhenxing & Zhang, Yong & Zheng, Xiujuan & Jin, Junyang, 2023. "Improved multi-gate mixture-of-experts framework for multi-step prediction of gas load," Energy, Elsevier, vol. 282(C).
    2. Asma Shaheen & Javed Iqbal, 2018. "Spatial Distribution and Mobility Assessment of Carcinogenic Heavy Metals in Soil Profiles Using Geostatistics and Random Forest, Boruta Algorithm," Sustainability, MDPI, vol. 10(3), pages 1-20, March.
    3. Ramón Ferri-García & María del Mar Rueda, 2022. "Variable selection in Propensity Score Adjustment to mitigate selection bias in online surveys," Statistical Papers, Springer, vol. 63(6), pages 1829-1881, December.
    4. Ghosh, Indranil & Chaudhuri, Tamal Datta & Alfaro-Cortés, Esteban & Gámez, Matías & García, Noelia, 2022. "A hybrid approach to forecasting futures prices with simultaneous consideration of optimality in ensemble feature selection and advanced artificial intelligence," Technological Forecasting and Social Change, Elsevier, vol. 181(C).
    5. Manuel J. García Rodríguez & Vicente Rodríguez Montequín & Francisco Ortega Fernández & Joaquín M. Villanueva Balsera, 2019. "Public Procurement Announcements in Spain: Regulations, Data Analysis, and Award Price Estimator Using Machine Learning," Complexity, Hindawi, vol. 2019, pages 1-20, November.
    6. Sangjin Kim & Jong-Min Kim, 2019. "Two-Stage Classification with SIS Using a New Filter Ranking Method in High Throughput Data," Mathematics, MDPI, vol. 7(6), pages 1-16, May.
    7. Arjan S. Gosal & Janine A. McMahon & Katharine M. Bowgen & Catherine H. Hoppe & Guy Ziv, 2021. "Identifying and Mapping Groups of Protected Area Visitors by Environmental Awareness," Land, MDPI, vol. 10(6), pages 1-14, May.
    8. Zhao-Yue Chen & Hervé Petetin & Raúl Fernando Méndez Turrubiates & Hicham Achebak & Carlos Pérez García-Pando & Joan Ballester, 2024. "Population exposure to multiple air pollutants and its compound episodes in Europe," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    9. Bram Janssens & Matthias Bogaert & Mathijs Maton, 2023. "Predicting the next Pogačar: a data analytical approach to detect young professional cycling talents," Annals of Operations Research, Springer, vol. 325(1), pages 557-588, June.
    10. Cooray, Upul & Watt, Richard G. & Tsakos, Georgios & Heilmann, Anja & Hariyama, Masanori & Yamamoto, Takafumi & Kuruppuarachchige, Isuruni & Kondo, Katsunori & Osaka, Ken & Aida, Jun, 2021. "Importance of socioeconomic factors in predicting tooth loss among older adults in Japan: Evidence from a machine learning analysis," Social Science & Medicine, Elsevier, vol. 291(C).
    11. Simon Besnard & Nuno Carvalhais & M Altaf Arain & Andrew Black & Benjamin Brede & Nina Buchmann & Jiquan Chen & Jan G P W Clevers & Loïc P Dutrieux & Fabian Gans & Martin Herold & Martin Jung & Yoshik, 2019. "Memory effects of climate and vegetation affecting net ecosystem CO2 fluxes in global forests," PLOS ONE, Public Library of Science, vol. 14(2), pages 1-22, February.
    12. Francesco Sartor & Jonathan P. Moore & Hans-Peter Kubis, 2021. "Plasma Interleukin-10 and Cholesterol Levels May Inform about Interdependences between Fitness and Fatness in Healthy Individuals," IJERPH, MDPI, vol. 18(4), pages 1-19, February.
    13. Nawin Raj, 2022. "Prediction of Sea Level with Vertical Land Movement Correction Using Deep Learning," Mathematics, MDPI, vol. 10(23), pages 1-23, November.
    14. Piotr Pomorski & Denise Gorse, 2023. "Improving Portfolio Performance Using a Novel Method for Predicting Financial Regimes," Papers 2310.04536, arXiv.org.
    15. Caperna, Giulio & Colagrossi, Marco & Geraci, Andrea & Mazzarella, Gianluca, 2022. "A babel of web-searches: Googling unemployment during the pandemic," Labour Economics, Elsevier, vol. 74(C).
    16. Hakan Pabuccu & Adrian Barbu, 2023. "Feature Selection with Annealing for Forecasting Financial Time Series," Papers 2303.02223, arXiv.org, revised Feb 2024.
    17. Abolfazl Mollalo & Kiara M. Rivera & Behzad Vahedi, 2020. "Artificial Neural Network Modeling of Novel Coronavirus (COVID-19) Incidence Rates across the Continental United States," IJERPH, MDPI, vol. 17(12), pages 1-13, June.
    18. Marc Deffland & Claudia Spies & Bjoern Weiss & Niklas Keller & Mirjam Jenny & Jochen Kruppa & Felix Balzer, 2020. "Effects of pain, sedation and delirium monitoring on clinical and economic outcome: A retrospective study," PLOS ONE, Public Library of Science, vol. 15(9), pages 1-14, September.
    19. Faisal Alsayegh & Moh A Alkhamis & Fatima Ali & Sreeja Attur & Nicholas M Fountain-Jones & Mohammad Zubaid, 2022. "Anemia or other comorbidities? using machine learning to reveal deeper insights into the drivers of acute coronary syndromes in hospital admitted patients," PLOS ONE, Public Library of Science, vol. 17(1), pages 1-15, January.
    20. Aras, Serkan & Hanifi Van, M., 2022. "An interpretable forecasting framework for energy consumption and CO2 emissions," Applied Energy, Elsevier, vol. 328(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:10:y:2021:i:12:p:1384-:d:702177. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.