Predictive Modelling of Landslide Susceptibility in the Western Carpathian Flysch Zone
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- F. Falaschi & F. Giacomelli & P. Federici & A. Puccinelli & G. D’Amato Avanzi & A. Pochini & A. Ribolini, 2009. "Logistic regression versus artificial neural networks: landslide susceptibility evaluation in a sample area of the Serchio River valley, Italy," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 50(3), pages 551-569, September.
- Nussaïbah B. Raja & Ihsan Çiçek & Necla Türkoğlu & Olgu Aydin & Akiyuki Kawasaki, 2017. "Landslide susceptibility mapping of the Sera River Basin using logistic regression model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 85(3), pages 1323-1346, February.
- Juan Remondo & Alberto González & José De Terán & Antonio Cendrero & Andrea Fabbri & Chang-Jo Chung, 2003. "Validation of Landslide Susceptibility Maps; Examples and Applications from a Case Study in Northern Spain," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 30(3), pages 437-449, November.
- Wright, Marvin N. & Ziegler, Andreas, 2017. "ranger: A Fast Implementation of Random Forests for High Dimensional Data in C++ and R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 77(i01).
- Christos Polykretis & Christos Chalkias, 2018. "Comparison and evaluation of landslide susceptibility maps obtained from weight of evidence, logistic regression, and artificial neural network models," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 93(1), pages 249-274, August.
- Guilherme Garcia Oliveira & Luis Fernando Chimelo Ruiz & Laurindo Antonio Guasselli & Claus Haetinger, 2019. "Random forest and artificial neural networks in landslide susceptibility modeling: a case study of the Fão River Basin, Southern Brazil," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 99(2), pages 1049-1073, November.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Abazar Esmali Ouri & Mohammad Golshan & Saeid Janizadeh & Artemi Cerdà & Assefa M. Melesse, 2020. "Soil Erosion Susceptibility Mapping in Kozetopraghi Catchment, Iran: A Mixed Approach Using Rainfall Simulator and Data Mining Techniques," Land, MDPI, vol. 9(10), pages 1-18, October.
- Weidong Wang & Zhuolei He & Zheng Han & Yange Li & Jie Dou & Jianling Huang, 2020. "Mapping the susceptibility to landslides based on the deep belief network: a case study in Sichuan Province, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(3), pages 3239-3261, September.
- Luis A Barboza & Shu-Wei Chou-Chen & Paola Vásquez & Yury E García & Juan G Calvo & Hugo G Hidalgo & Fabio Sanchez, 2023. "Assessing dengue fever risk in Costa Rica by using climate variables and machine learning techniques," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 17(1), pages 1-13, January.
- E. Rotigliano & C. Cappadonia & C. Conoscenti & D. Costanzo & V. Agnesi, 2012. "Slope units-based flow susceptibility model: using validation tests to select controlling factors," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 61(1), pages 143-153, March.
- Bokelmann, Björn & Lessmann, Stefan, 2024. "Improving uplift model evaluation on randomized controlled trial data," European Journal of Operational Research, Elsevier, vol. 313(2), pages 691-707.
- Rui Yuan & Jing Chen, 2022. "A hybrid deep learning method for landslide susceptibility analysis with the application of InSAR data," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(2), pages 1393-1426, November.
- Joel Podgorski & Oliver Kracht & Luis Araguas-Araguas & Stefan Terzer-Wassmuth & Jodie Miller & Ralf Straub & Rolf Kipfer & Michael Berg, 2024. "Groundwater vulnerability to pollution in Africa’s Sahel region," Nature Sustainability, Nature, vol. 7(5), pages 558-567, May.
- Kourosh Shirani & Mehrdad Pasandi & Alireza Arabameri, 2018. "Landslide susceptibility assessment by Dempster–Shafer and Index of Entropy models, Sarkhoun basin, Southwestern Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 93(3), pages 1379-1418, September.
- Chakravorty, Bhaskar & Arulampalam, Wiji & Bhatiya, Apurav Yash & Imbert, Clément & Rathelot, Roland, 2024.
"Can information about jobs improve the effectiveness of vocational training? Experimental evidence from India,"
Journal of Development Economics, Elsevier, vol. 169(C).
- Chakravorty, Bhaskar & Arulampalam, Wiji & Bhatiya, Apurav Yash & Imbert, Clement & Rathelot, Roland, 2021. "Can information about jobs improve the effectiveness of vocational training? Experimental evidence from India," CAGE Online Working Paper Series 567, Competitive Advantage in the Global Economy (CAGE).
- Chakravorty, Bhaskar & Arulampalam, Wiji & Bhatiya, Apurav Yash & Imbert, Clement & Rathelot, Roland, 2021. "Can information about jobs improve the effectiveness of vocational training? Experimental evidence from India," The Warwick Economics Research Paper Series (TWERPS) 1361, University of Warwick, Department of Economics.
- Chakravorty, Bhaskar & Arulampalam, Wiji & Bhatiya, Apurav Yash & Imbert, Clement & Rathelot, Roland, 2021. "Can Information about Jobs Improve the Effectiveness of Vocational Training? Experimental Evidence from India," IZA Discussion Papers 14427, Institute of Labor Economics (IZA).
- David Dorn & Florian Schoner & Moritz Seebacher & Lisa Simon & Ludger Woessmann, 2024.
"Multidimensional Skills on LinkedIn Profiles: Measuring Human Capital and the Gender Skill Gap,"
Papers
2409.18638, arXiv.org, revised May 2025.
- Dorn, David & Schoner, Florian & Seebacher, Moritz & Simon, Lisa & Woessmann, Ludger, 2025. "Multidimensional Skills on LinkedIn Profiles: Measuring Human Capital and the Gender Skill Gap," IZA Discussion Papers 17896, Institute of Labor Economics (IZA).
- David Dorn & Florian Schoner & Moritz Seebacher & Lisa Simon & Ludger Woessmann, 2025. "Multidimensional Skills on LinkedIn Profiles: Measuring Human Capital and the Gender Skill Gap," CESifo Working Paper Series 11846, CESifo.
- Albert Stuart Reece & Gary Kenneth Hulse, 2022. "European Epidemiological Patterns of Cannabis- and Substance-Related Congenital Neurological Anomalies: Geospatiotemporal and Causal Inferential Study," IJERPH, MDPI, vol. 20(1), pages 1-35, December.
- Foutzopoulos, Giorgos & Pandis, Nikolaos & Tsagris, Michail, 2024.
"Predicting full retirement attainment of NBA players,"
MPRA Paper
121540, University Library of Munich, Germany.
- Giorgos Foutzopoulos & Nikolaos Pandis & Michail Tsagris, 2024. "Predicting Full Retirement Attainment of NBA Players," Working Papers 2403, University of Crete, Department of Economics.
- Van Belle, Jente & Guns, Tias & Verbeke, Wouter, 2021. "Using shared sell-through data to forecast wholesaler demand in multi-echelon supply chains," European Journal of Operational Research, Elsevier, vol. 288(2), pages 466-479.
- Philipp Bach & Victor Chernozhukov & Malte S. Kurz & Martin Spindler & Sven Klaassen, 2021. "DoubleML -- An Object-Oriented Implementation of Double Machine Learning in R," Papers 2103.09603, arXiv.org, revised Jun 2024.
- Marchetto, Elisa & Da Re, Daniele & Tordoni, Enrico & Bazzichetto, Manuele & Zannini, Piero & Celebrin, Simone & Chieffallo, Ludovico & Malavasi, Marco & Rocchini, Duccio, 2023. "Testing the effect of sample prevalence and sampling methods on probability- and favourability-based SDMs," Ecological Modelling, Elsevier, vol. 477(C).
- repec:plo:pone00:0233806 is not listed on IDEAS
- Michael Bucker & Gero Szepannek & Alicja Gosiewska & Przemyslaw Biecek, 2020. "Transparency, Auditability and eXplainability of Machine Learning Models in Credit Scoring," Papers 2009.13384, arXiv.org.
- Jian Lu & Raheel Ahmad & Thomas Nguyen & Jeffrey Cifello & Humza Hemani & Jiangyuan Li & Jinguo Chen & Siyi Li & Jing Wang & Achouak Achour & Joseph Chen & Meagan Colie & Ana Lustig & Christopher Dunn, 2022. "Heterogeneity and transcriptome changes of human CD8+ T cells across nine decades of life," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
- Di Wang & Mengmeng Hao & Shuai Chen & Ze Meng & Dong Jiang & Fangyu Ding, 2021. "Assessment of landslide susceptibility and risk factors in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(3), pages 3045-3059, September.
- Timo Schulte & Tillmann Wurz & Oliver Groene & Sabine Bohnet-Joschko, 2023. "Big Data Analytics to Reduce Preventable Hospitalizations—Using Real-World Data to Predict Ambulatory Care-Sensitive Conditions," IJERPH, MDPI, vol. 20(6), pages 1-16, March.
- Bennett, Donyetta & Mekelburg, Erik & Strauss, Jack & Williams, T.H., 2024. "Unlocking the black box of sentiment and cryptocurrency: What, which, why, when and how?," Global Finance Journal, Elsevier, vol. 60(C).
More about this item
Keywords
predictive modelling; correlation analysis; logistic regression; random forest; landslide susceptibility; western carpathians;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:10:y:2021:i:12:p:1370-:d:700239. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.