IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v10y2021i11p1200-d673393.html
   My bibliography  Save this article

Addressing Peatland Rewetting in Russian Federation Climate Reporting

Author

Listed:
  • Andrey Sirin

    (Institute of Forest Science, Russian Academy of Sciences, Uspenskoye, 143030 Moscow Region, Russia)

  • Maria Medvedeva

    (Institute of Forest Science, Russian Academy of Sciences, Uspenskoye, 143030 Moscow Region, Russia)

  • Vladimir Korotkov

    (Yu. A. Izrael Institute of Global Climate and Ecology, 20B Glebovskaya Str., 107258 Moscow, Russia)

  • Victor Itkin

    (Department of Applied Mathematics and Computer Modelling, National University of Oil and Gas «Gubkin University», 65 Leninsky Prospekt, 119991 Moscow, Russia)

  • Tatiana Minayeva

    (Institute of Forest Science, Russian Academy of Sciences, Uspenskoye, 143030 Moscow Region, Russia)

  • Danil Ilyasov

    (Institute of Forest Science, Russian Academy of Sciences, Uspenskoye, 143030 Moscow Region, Russia)

  • Gennady Suvorov

    (Institute of Forest Science, Russian Academy of Sciences, Uspenskoye, 143030 Moscow Region, Russia)

  • Hans Joosten

    (Institute of Botany and Landscape Ecology, Greifswald University, Partner in the Greifswald Mire Centre, Soldmannstrasse 15, D-17487 Greifswald, Germany)

Abstract

Rewetting is the most effective way to reduce greenhouse gas (GHG) emissions from drained peatlands and must significantly contribute to the implementation of the Paris Agreement on Climate within the land sector. In 2010–2013, more than 73 thousand hectares of fire-prone peatlands were rewetted in the Moscow Region (the hitherto largest rewetting program in the Northern Hemisphere). As the Russian Federation has no national accounting of rewetted areas yet, this paper presents an approach to detect them based on multispectral satellite data verified by ground truthing. We propose that effectively rewetted areas should minimally include areas with wet grasslands and those covered with water (cf. the IPCC categories “rewetted organic soils” and “flooded lands”). In 2020, these lands amounted in Moscow Region to more than 5.3 and 3.6 thousand hectares, respectively. Assuming that most rewetted areas were former peat extraction sites and using IPCC default GHG emission factors, an overall GHG emission reduction of over 36,000 tCO 2 -eq year −1 was calculated. We furthermore considered the uncertainty of calculations. With the example of a 1535 ha large rewetted peatland, we illustrate the estimation of GHG emission reductions for the period up to 2050. The approach presented can be used to estimate GHG emission reductions by peatland rewetting on the national, regional, and object level.

Suggested Citation

  • Andrey Sirin & Maria Medvedeva & Vladimir Korotkov & Victor Itkin & Tatiana Minayeva & Danil Ilyasov & Gennady Suvorov & Hans Joosten, 2021. "Addressing Peatland Rewetting in Russian Federation Climate Reporting," Land, MDPI, vol. 10(11), pages 1-17, November.
  • Handle: RePEc:gam:jlands:v:10:y:2021:i:11:p:1200-:d:673393
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/10/11/1200/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/10/11/1200/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Francesco Nicola Tubiello & Riccardo Biancalani & Mirella Salvatore & Simone Rossi & Giulia Conchedda, 2016. "A Worldwide Assessment of Greenhouse Gas Emissions from Drained Organic Soils," Sustainability, MDPI, vol. 8(4), pages 1-13, April.
    2. Jens Leifeld & Chloé Wüst-Galley & Susan Page, 2019. "Intact and managed peatland soils as a source and sink of GHGs from 1850 to 2100," Nature Climate Change, Nature, vol. 9(12), pages 945-947, December.
    3. Anke Günther & Alexandra Barthelmes & Vytas Huth & Hans Joosten & Gerald Jurasinski & Franziska Koebsch & John Couwenberg, 2020. "Prompt rewetting of drained peatlands reduces climate warming despite methane emissions," Nature Communications, Nature, vol. 11(1), pages 1-5, December.
    4. Bonn, Aletta & Reed, Mark S. & Evans, Chris D. & Joosten, Hans & Bain, Clifton & Farmer, Jenny & Emmer, Igino & Couwenberg, John & Moxey, Andrew & Artz, Rebekka & Tanneberger, Franziska & von Unger, M, 2014. "Investing in nature: Developing ecosystem service markets for peatland restoration," Ecosystem Services, Elsevier, vol. 9(C), pages 54-65.
    5. Andrey Sirin & Maria Medvedeva & Alexander Maslov & Anna Vozbrannaya, 2018. "Assessing the Land and Vegetation Cover of Abandoned Fire Hazardous and Rewetted Peatlands: Comparing Different Multispectral Satellite Data," Land, MDPI, vol. 7(2), pages 1-22, June.
    6. J. Leifeld & L. Menichetti, 2018. "The underappreciated potential of peatlands in global climate change mitigation strategies," Nature Communications, Nature, vol. 9(1), pages 1-7, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Olga Antsiferova & Maxim Napreenko & Tatiana Napreenko-Dorokhova, 2023. "Transformation of Soils and Mire Community Reestablishment Potential in Disturbed Abandoned Peatland: A Case Study from the Kaliningrad Region, Russia," Land, MDPI, vol. 12(10), pages 1-22, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rhymes, Jennifer M. & Arnott, David & Chadwick, David R. & Evans, Christopher D. & Jones, David L., 2023. "Assessing the effectiveness, practicality and cost effectiveness of mitigation measures to reduce greenhouse gas emissions from intensively cultivated peatlands," Land Use Policy, Elsevier, vol. 134(C).
    2. Edward B. Barbier, 2022. "The Policy Implications of the Dasgupta Review: Land Use Change and Biodiversity," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 83(4), pages 911-935, December.
    3. Kate Dooley & Ellycia Harrould‐Kolieb & Anita Talberg, 2021. "Carbon‐dioxide Removal and Biodiversity: A Threat Identification Framework," Global Policy, London School of Economics and Political Science, vol. 12(S1), pages 34-44, April.
    4. Matzek, Virginia & Wilson, Kerrie A. & Kragt, Marit, 2019. "Mainstreaming of ecosystem services as a rationale for ecological restoration in Australia," Ecosystem Services, Elsevier, vol. 35(C), pages 79-86.
    5. Sari, Dwi Amalia & Margules, Chris & Lim, Han She & Widyatmaka, Febrio & Sayer, Jeffrey & Dale, Allan & Macgregor, Colin, 2021. "Evaluating policy coherence: A case study of peatland forests on the Kampar Peninsula landscape, Indonesia," Land Use Policy, Elsevier, vol. 105(C).
    6. Glenk, Klaus & Schaafsma, Marije & Moxey, Andrew & Martin-Ortega, Julia & Hanley, Nick, 2014. "A framework for valuing spatially targeted peatland restoration," Ecosystem Services, Elsevier, vol. 9(C), pages 20-33.
    7. Johanna Norris & Bettina Matzdorf & Rena Barghusen & Christoph Schulze & Bart van Gorcum, 2021. "Viewpoints on Cooperative Peatland Management: Expectations and Motives of Dutch Farmers," Land, MDPI, vol. 10(12), pages 1-16, December.
    8. Michael Manton & Evaldas Makrickas & Piotr Banaszuk & Aleksander Kołos & Andrzej Kamocki & Mateusz Grygoruk & Marta Stachowicz & Leonas Jarašius & Nerijus Zableckis & Jūratė Sendžikaitė & Jan Peters &, 2021. "Assessment and Spatial Planning for Peatland Conservation and Restoration: Europe’s Trans-Border Neman River Basin as a Case Study," Land, MDPI, vol. 10(2), pages 1-27, February.
    9. Martin-Ortega, Julia & Young, Dylan M. & Glenk, Klaus & Baird, Andy J. & Jones, Laurence & Rowe, Edwin C. & Evans, Chris D. & Dallimer, Martin & Reed, Mark S., 2021. "Linking ecosystem changes to their social outcomes: Lost in translation," Ecosystem Services, Elsevier, vol. 50(C).
    10. van den Belt, Marjan & Stevens, Sharon M., 2016. "Transformative agenda, or lost in the translation? A review of top-cited articles in the first four years of Ecosystem Services," Ecosystem Services, Elsevier, vol. 22(PA), pages 60-72.
    11. Georgiana Moiceanu & Mirela Nicoleta Dinca, 2021. "Climate Change-Greenhouse Gas Emissions Analysis and Forecast in Romania," Sustainability, MDPI, vol. 13(21), pages 1-21, November.
    12. Marco Rebhann & Yusuf Nadi Karatay & Günther Filler & Annette Prochnow, 2016. "Profitability of Management Systems on German Fenlands," Sustainability, MDPI, vol. 8(11), pages 1-21, October.
    13. Ryszard Oleszczuk & Andrzej Łachacz & Barbara Kalisz, 2022. "Measurements versus Estimates of Soil Subsidence and Mineralization Rates at Peatland over 50 Years (1966–2016)," Sustainability, MDPI, vol. 14(24), pages 1-19, December.
    14. Günther, Anke & Böther, Stefanie & Couwenberg, John & Hüttel, Silke & Jurasinski, Gerald, 2018. "Profitability of Direct Greenhouse Gas Measurements in Carbon Credit Schemes of Peatland Rewetting," Ecological Economics, Elsevier, vol. 146(C), pages 766-771.
    15. Mārtiņš Vanags-Duka & Arta Bārdule & Aldis Butlers & Emīls Mārtiņš Upenieks & Andis Lazdiņš & Dana Purviņa & Ieva Līcīte, 2022. "GHG Emissions from Drainage Ditches in Peat Extraction Sites and Peatland Forests in Hemiboreal Latvia," Land, MDPI, vol. 11(12), pages 1-17, December.
    16. Olga Antsiferova & Maxim Napreenko & Tatiana Napreenko-Dorokhova, 2023. "Transformation of Soils and Mire Community Reestablishment Potential in Disturbed Abandoned Peatland: A Case Study from the Kaliningrad Region, Russia," Land, MDPI, vol. 12(10), pages 1-22, October.
    17. Alex C Valach & Kuno Kasak & Kyle S Hemes & Tyler L Anthony & Iryna Dronova & Sophie Taddeo & Whendee L Silver & Daphne Szutu & Joseph Verfaillie & Dennis D Baldocchi, 2021. "Productive wetlands restored for carbon sequestration quickly become net CO2 sinks with site-level factors driving uptake variability," PLOS ONE, Public Library of Science, vol. 16(3), pages 1-22, March.
    18. Tri Wira Yuwati & Dony Rachmanadi & Pratiwi & Maman Turjaman & Yonky Indrajaya & Hunggul Yudono Setio Hadi Nugroho & Muhammad Abdul Qirom & Budi Hadi Narendra & Bondan Winarno & Sri Lestari & Purwanto, 2021. "Restoration of Degraded Tropical Peatland in Indonesia: A Review," Land, MDPI, vol. 10(11), pages 1-31, November.
    19. Moxey, Andrew & Smyth, Mary-Ann & Taylor, Emily & Williams, A. Prysor, 2021. "Barriers and opportunities facing the UK Peatland Code: A case-study of blended green finance," Land Use Policy, Elsevier, vol. 108(C).
    20. Ignacio Perez Dominguez & Thomas Fellmann & Peter Witzke & Franz Weiss & Jordan Hristov & Mihaly Himics & Jesus Barreiro-Hurle & Manuel Gomez Barbero & Adrian Leip, 2020. "Economic assessment of GHG mitigation policy options for EU agriculture: A closer look at mitigation options and regional mitigation costs (EcAMPA 3)," JRC Research Reports JRC120355, Joint Research Centre.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:10:y:2021:i:11:p:1200-:d:673393. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.